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Abstract

An ultrasonic bone density measurement is a radiation-free alternative to conventional methods like
dual-energy X-ray absorptiometry (DXA). This research investigates the feasibility of bone density
estimation from features of ultrasound signals using machine learning. A 1000-sample dataset
characterized by features like bone region, wave speed, signal amplitude, frequency, time-of-flight,
noise, and signal-to-noise ratio (SNR) was analyzed. Feature engineering was employed to derive
composite features from raw signal features. A training MLP regressor with the engineered feature
set provided a promising R-squared of 0.6723, with a mean absolute error of 0.1426 g/cm3. The
findings show that ultrasonic signal analysis with the appropriate machine learning methodologies
has excellent prospects in non-invasive bone density estimation. This approach could ultimately
result in safer and more accessible methods for tracking bone health, particularly in populations
where radiation exposure is a concern. Future steps would be to validate this process with in-vivo
data and refine the feature engineering process to further improve predictive accuracy.

Keywords: Bone Density, Convolutional Neural Networks, Diffracted Pulse Strength Analysis,
Osteoporosis, Ultrasound Imaging, Bone Microarchitecture, Non-Invasive Diagnostics.

1 Introduction

Background

Assessing bone health is crucial for the diagnosis and management of skeletal conditions like
osteoporosis, which affects millions of people globally and increases the risk of fractures and reduces
mobility. An early diagnosis, treatment response monitoring, and the implementation of preventive
measures all depend on an accurate measurement of bone density. Dual-energy X-ray absorptiometry
(DXA) and quantitative computed tomography (QCT) are currently the most popular imaging modalities
used for measuring bone density. But because these methods depend on ionizing radiation, their regular
application is prohibited for safety reasons. Additionally, they are relatively expensive and necessitate
specialized facilities, which makes them unavailable in most clinical and point-of-care settings. Methods
based on ultrasound have emerged as an acceptable substitute for non-invasive bone density testing in
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the last few years. In contrast to X-ray-based imaging, ultrasound is inexpensive, portable, and free of
radiation, and therefore ideal for population screening, bedside diagnosis, and low-resource setting
applications. To estimate bone properties, conventional ultrasonic bone measurement techniques usually
measure broadband ultrasound attenuation (BUA) and speed of sound (SOS). However, traditional
techniques tend not to be precise, particularly when determining trabecular bone, wherein intricate
microstructural interactions are involved in wave propagation.

The reliability and sensitivity of ultrasonic bone density measurement can now be improved using
improvements in ultrasonic wave modeling and signal processing. Measurement of diffracted pulse
strength, which is a study of how the ultrasonic waves behave with the microstructural elements of the
bone, is one possible method. When an acoustic wave hits a structural discontinuity, such as pores,
mineralized trabeculae, or cortical interfaces, there will be effects by diffraction. The amplitude of the
diffracted wave may be a hopeful indicator for bone condition assessment and provides useful
information on bone microarchitecture as well as density. More features can be derived in comparison
to traditional SOS and BUA measurements with increased diagnostic performance through detection
and processing of such diffracted signals.

To be able to utilize the entire potential of diffracted pulse strength analysis, computational modeling
must be used in order to become informed about wave propagation through bone tissue. Finite Element
Method (FEM) and k-Wave simulation can be used to generate artificial data that simulate actual
ultrasound interaction with bone structures. Such simulations present a controlled environment in which
to see how various bone densities affect ultrasonic wave behavior. In addition, advances in machine
learning offer more capability for the identification of useful patterns in ultrasonic signals to improve
accuracy in bone density estimation. Deep learning algorithms, including convolutional neural networks
(CNNSs), have been especially effective in handling intricate waveforms and in identifying elusive
patterns not easily observed with traditional signal processing techniques. In this work, we examine the
feasibility of using diffracted pulse strength analysis as a novel ultrasonic technique to measure bone
density. Based on numerical simulation, sophisticated signal processing, and machine learning
techniques, we aim to set up a framework to reliably estimate bone density from diffracted ultrasonic
waves. This technique can be used to enhance diagnosis by offering a radiation-free, portable, and
inexpensive device to assess bone health.

Then comes the presentation of the problem statement, theory, methodology, simulation-based
results and machine learning-based analysis of this approach, along with merits and its application in
clinical practice and future research.

Problem Statement

As the tide of population aging rolls on undeterred, so does the burden from osteoporosis. The burden
of fractures due to osteoporosis is not merely beyond the threshold of individual morbidity but also
exerts a phenomenal impact on healthcare systems and public resources (Shuen et al., 2024). In
particular, the expenditure for osteoporotic fracture complications encompasses direct medical costs,
lost productivity, and long-term care (Tali¢ et al., 2022). This requires increased urgently needed
preventive measures toward early detection, prevention, and treatment of osteoporosis (Turan et al.,
2023). In addition, the impact of osteoporotic fractures extends beyond physical effects, e.g.,
psychosocial effects such as diminished quality of life, increased dependency, and emotional anguish
(Jayaraman et al., 2024). Given all these kinds of complex challenges, the need for new and effective
bone density-measuring methods is increasingly vital (Bonnick, 1998).
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While conventional modalities like dual-energy X-ray absorptiometry (DXA) and computed
tomography (CT) yield valuable information regarding bone status, their ionizing radiation and logistical
hindrances in use restrict general use and accessibility (Rahman & Begum, 2024). As alternatives,
ultrasound-based methods offer themselves as promising options with advantages of low cost, non-
invasive, and mobility (Alavi et al., 2021). However, present ultrasound techniques are mostly directed
at quantifying such parameters as ultrasonic attenuation and speed of sound, which can be short of the
delicacy of bone density (Udayakumar et al., 2023). Hence, there is an urgent need to advance the
ultrasonic bone density measurement field with special interest in ascertaining the value of diffracted
pulse strength analysis (Wear, 2019).

Medical advances in imaging technology have opened the way to a revolution in bone density
measurement, and ultrasound is the favorite contender to emerge in this category. The safety profile
inbuilt in ultrasound, combined with its quality of image formation, makes it a compelling case for bone
health evaluation. A break from traditional measures is necessary to achieve the potential of ultrasound-
based measurement of bone density, however (Nakamura & Lindholm, 2025). While measurement of
sound speed and ultrasonic attenuation is helpful, they may prove to be inadequate in describing bone
composition and microarchitecture complexity. The addition of diffracted pulse strength analysis is thus
a promising way to enhance the precision and accuracy of the diagnostic usefulness of ultrasonic bone
density measurement (Li et al., 2021).

Strength analysis of diffracted pulses utilizes ultrasonic wave diffraction patterns upon meeting bone
tissue, resulting in unique bone density and microstructural features information. Through amplitude
and characteristics of diffracted pulses analysis, this technique provides more detailed bone health
parameters knowledge. Besides, analysis of diffracted pulse strength can differentiate among various
bone tissue types like cortical and trabecular bone, thereby enabling more precise evaluations of bone
guality. Also, the real-time and non-invasive nature of ultrasound imaging enables dynamic follow-up
observation of temporal variations in bone density, enabling possible interventions at the right time and
appropriate individualized management plans (Kalkhoran, 2017).

The particular lacuna in current ultrasound-based methods that our study seeks to fill is that these
methods do not fully and accurately measure bone density. Though ultrasound imaging has advantages
of affordability, non-invasiveness, and portability, existing methods are mainly based on the
measurement of parameters such as ultrasonic attenuation and speed of sound. However, these
parameters may not capture the entire sophistication of bone density, particularly in distinguishing
between cortical and trabecular bone or defining bone microarchitecture adequately. Thus, existing
ultrasound technologies may have suboptimal accuracy and specificity in measuring bone density and,
as a result, osteoporosis misdiagnosis or inappropriate osteoporosis care. Therefore, an urgent need for
new approaches to enhancing the precision and completeness of ultrasound-based bone density
measurement to bridge this huge gap in existing diagnostic methods emerges.

The overall objective of our investigation is to develop and optimize an ultrasonic bone density
measurement technique with diffracted pulse strength analysis. This emerging technique would
significantly improve bone density measurement accuracy, specificity, and completeness compared with
existing ultrasound technology (Falih, 2024). Through diffracted pulse strength analysis, our research
would aim to better differentiate between cortical and trabecular bone and further specify bone
microarchitecture (Lawal & Krishnan, 2020). Through experimental testing and validation, it is our
intention to determine the efficacy and reliability of this novel ultrasonic method, ultimately leading to
improved osteoporosis diagnosis and treatment and patient outcomes.
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Combining artificial intelligence (Al) with ultrasonic imaging obtained by diffracted pulse strength
analysis strategically represents a new direction for effectively overcoming the drawbacks of current
bone density testing techniques. Although ultrasound-based technology is largely an affordable and
completely non-invasive process, current procedures may not always provide as accurately or as
holistically precise an assessment of bone density (Khyade, 2019). With the use of Al algorithms,
accuracy and efficiency in bone density measurement can be greatly enhanced, particularly in the clear
segmentation of cortical and trabecular bone and bone microarchitecture (Kafi et al., 2019). The new
technique can potentially change osteoporosis diagnosis and treatment by providing objectively,
guantitatively, and personally optimized information about bone status with consistency.

The incorporation of Convolutional Neural Networks (CNNSs) in our research particularly tackles a
very critical gap in current ultrasonic-based bone density estimation protocols (Gupta & Verma, 2025).
CNNs handle very complex visual information with high efficiency, such as ultrasonic images based on
diffracted pulse strength analysis. With deep learning algorithms, CNNs have the ability to automatically
extract clinically relevant features from such images for exactly enabling classification, segmentation,
and quantitative assessment of bone density parameters. The innovative Al algorithm significantly
enhances the accuracy and efficiency of bone density detection by objectively rendering a
comprehensively detailed analysis of bone health.

Furthermore, the integration of CNNs in our research model effectively enables real-time,
automatically guided ultrasonic image interpretation, seamlessly facilitating easy diagnosis and actively
empowering medical practitioners with vital information for effectively carrying out successful
treatment of osteoporosis.

2 Theoretical Framework

Ultrasonic Wave Propagation in Bone

Propagation of ultrasonic waves in bone is a complex process influenced by the intricate microstructure
and composition of bone material. This process is of key significance to understand while creating non-
invasive imaging techniques for evaluating bone condition (Zhang et al., 2010). Over the past decade, a
number of computational and experimental approaches were employed to explain mechanisms of
ultrasonic interaction with bone tissues (Shetty & Kapoor, 2024). Finite-Difference Time-Domain
(FDTD) calculations have been employed to simulate ultrasonic wave attenuation in cancellous bone.
Numerical and experimental studies by Matsukawa et al. demonstrated that the porous structure of bone
plays a role in wave attenuation producing frequency-dependent behavior of attenuation (Matsukawa et
al., 2020). These findings highlight the importance of considering bone microarchitecture in ultrasonic
measurement.

The effects of porosity in cortical bone on transmission of ultrasonic waves have also been
investigated. Potsika et al. used computer simulations to investigate the effect of variations in the
porosity of cortical bone on ultrasonic wave velocity and attenuation. Results indicated that increased
porosity leads to lower wave velocity and higher attenuation, which can be used in the diagnosis of
osteoporosis (Potsika et al., 2016). Effective medium theories were used to mimic propagation of
ultrasound waves during long bone healing. Potsika et al. proposed a model taking into account the
heterogeneity of the healing bone tissue, providing some insight into changes in ultrasonic wave
properties during healing (Potsika et al., 2020). It is useful in knowing how ultrasonic measurements are
affected by bone regeneration.
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Experimental studies have complemented computational modeling with empirical findings on the
behavior of ultrasonic waves in bone. Mizuno et al. conducted experiments to observe waveform
changes during propagation through cancellous bone, illustrating the complex interactions of ultrasonic
waves with the trabecular network of the bone (Fujita et al., 2013). Experimental studies enhance the
understanding of ultrasonic wave dynamics in bone tissue. Modern imaging techniques have also
extended the research of ultrasonic wave propagation in bone. Lasaygues et al. suggested an ultrasonic
computed tomography method based on full-waveform inversion for the quantification of cortical bone
elastic properties. The technique allows precise bone elasticity mapping, which is critical in assessing
bone strength and quality (Lasaygues & Bernard, 2021). The propagation of guided ultrasonic waves in
long bones has also been studied to assess bone health. Protopappas et al. monitored the guided wave
response of intact and healing bones, demonstrating the capabilities of the method for monitoring bone
healing and identifying abnormality (Protopappas et al., 2006). The guided wave techniques offer a
possible avenue for non-destructive bone testing.

Numerical calculations have also been employed to explore the influence of cortical porosity on
ultrasound wave propagation. Computational simulations performed by Potsika et al. revealed that
increased cortical porosity results in radical changes in ultrasonic wave speed and attenuation, which are
quite significant parameters when assessing bone quality (Potsika et al., 2021). The employment of
effective medium theories has illuminated the modeling of ultrasonic wave propagation in healing long
bones. Such theories were employed by Potsika et al. to describe the multiscale structure of healing bone
tissue to better elucidate ultrasonic wave behavior during bone regeneration (Potsika et al., 2020).

Experimental studies have also provided insight into ultrasonic wave propagation in cancellous bone.
Experiments conducted by Mizuno et al. indicated that the porous nature of the bone has a severe effect
on the attenuation of ultrasonic waves, leading to frequency-dependent attenuation characteristics
(Potsika et al., 2020). Advanced ultrasonic methods have been developed for ascertaining the elastic
parameters of the cortical bone. Lasaygues et al. proposed yet another ultrasonic method offering
accurate mapping of bone elasticity, which is of greatest significance in bone strength and quality
determination (Protopappas et al., 2006). In short, recent advances in computational modeling,
experimental studies, and imaging hardware have all considerably clarified the ultrasonic wave
propagation in bone. All these developments hold promise for improving non-invasive diagnostic
devices for bone quality assessment.

Concept of Diffracted Pulse Strength Analysis

Theory of diffracted pulse strength analysis for measuring ultrasonic bone density involves the
investigation of the scattering or diffracted ultrasound signals propagating through the bone tissue. It
applies the unique aspects of the bone microscopic structure and diffraction signatures of ultrasonic
waves to make deductions about pertinent information concerning bone properties such as density and
integrity. Strength of diffracted pulse is a very strong indicator of the internal structure of bone, and its
quantification plays a critical role in the determination of bone quality as well as the diagnosis of
osteoporosis disease. Theoretical and experimental methods of strength of diffracted pulse analysis,
applications, and recent updates on this topic are discussed in this chapter.

Strength evaluation of diffracted pulses relies on the premise that ultrasonic wave traveling through
a material-like bone will be needed to meet interfaces, discontinuities, and irregularities in the material
leading to wave diffraction or scattering. Bone microarchitecture defines patterns of diffraction, for
instance, porosity of cortical and trabecular bone structure. These microstructural parameters influence
the amplitude of diffracted pulses and are related to bone density. With the ability to measure diffracted
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signal amplitude and phase, there is the possibility for wide area scanning of bone properties at various
depths and regions of interest. In the last few years, this technique was adopted to meticulously monitor
bone change with time, as a response to disease like osteoporosis (Matsukawa & Tanaka, 2021).

Scattering bone wave is normally a byproduct of tissue heterogeneity, identifiably consisting of
pores, trabecular tissue, and mineralized tissue. On passage through bone by an ultrasonic wave,
variations in bone density and structure create the wave scattering for producing a diffraction pattern,
which could probably be scrutinized. Porosity of bones is one of the parameters that affect scattering,
altering the interaction between ultrasonic waves and bone tissue. (Komori et al., 2020; Zeng et al.,
2021) have noticeably uncovered the way scattering mechanisms are porosity dependent in cortical and
trabecular bone and how these can influence shape and intensity of diffracted waves (Komori & Lee,
2020; Zeng & Liu, 2021).

The amplitude adhesively related the diffracted pulse is usually used as a significant parameter by
bone density estimation algorithms. The procedure typically involves the detection of important features
such as amplitude, frequency shift, and time-of-flight (TOF) from the diffracted signal to assess bone
health. A very low amplitude of diffracted pulse is usually associated with low bone density, which is a
characteristic of diseases like osteoporosis. To aid and further enhance diagnostic accuracy,
mathematical models have been rigorously developed to emulate bone density interaction with diffracted
pulse behavior. These models allow scientists and practitioners to systematically examine how acoustic
wave parameters react to changes in bone structure, thereby maximally enhancing diagnostic methods.
For instance, (Yamanaka et al., 2021) came up with a model that specifically links pulse attenuation and
diffraction patterns to bone mineral density (BMD) changes, offering a quantitative method of measuring
bone health (Yamanaka & Tanaka, 2021)

To accurately quantify the diffracted pulse strength, signal processing techniques such as wavelet
analysis and Fourier transforms are commonly applied to systematically decompose the signal into
frequency components. These techniques effectively allow scientists to precisely pinpoint minor
inconsistencies in diffraction patterns that can reliably be used to indirectly infer changes in bone
density. New methods of time-frequency analysis, such as the application of Short-Time Fourier
Transform (STFT) and continuous wavelet transforms (CWT), have substantially improved the analysis
of intricate signals in heterogeneous media like bone (Nguyen & Tuan, 2021; Jin & Zhang, 2021).

Recently, techniques of machine learning were increasingly adopted for the analysis of diffracted
pulse strength to significantly make out some enhancements ad hoc to the precision of estimation related
to bone density. Fundamental intrinsic features initially derived out of diffracted signals like peak
amplitude, frequency shift, and time-of-flight (TOF) are routinely used as input parameters for machine
learning algorithms like Support Vector Machines (SVM) and Convolutional Neural Networks (CNN)
(Tran & Le, 2021).

These models are learned on realistic simulated data sets produced by realistic wave propagation
modeling within bone tissue. In this manner, the models can effectively learn fine patterns between
signal and bone properties. Deep learning algorithms have recently been demonstrated successfully in
predicting the bone density correctly from diffracted pulse features by (Tranetal., 2021; Lin et al., 2022;
Lin & Yu, 2022). Their findings demonstrate the value of combining data-driven modeling with high-
level signal analysis to enable non-invasive, real-time bone health measurements.

Ultrasound imaging techniques were substantially established with the specific purpose of improving
observation and inspection of diffracted pulses in bone tissue. Advanced techniques such as ultrasound
elastography and full-waveform inversion (FWI) enable high-resolution imaging of the internal structure
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of the bone. Such techniques enable good observation of diffraction patterns and accurate measurement
of the strength of diffracted pulses in different areas of the bone. Recent studies conducted by (Chen et
al., 2020; Xu et al., 2021) have succeeded in critically evaluating how these imaging modes, when
coupled with the analysis of diffracted pulses, are capable of providing a better evaluation of bone health
(Chen & Wang, 2020; Xu & Wang, 2021). Clinically, the measurement of the strength of diffracted
pulses has been a promising and non-invasive technique for assessing bone quality. By observing
diffraction patterns of ultrasonic waves continuously, physicians can continually gather data about bone
density and structure—without exposing patients to ionizing radiation, the major drawback of
conventional methods like CT scans and X-rays. Also, because these measurements can be taken in real
time, they serve as a valuable tool for continuous monitoring of bone health. This is particularly useful
in patients with conditions such as osteoporosis, where bone density can gradually change over time
(Zhang & Huang, 2021).

While promising, diffracted pulse strength analysis is not without its difficulties. Most notably among
these is the fact that good quality diffraction data from a clinical environment is difficult to obtain. Bone
heterogeneity and the presence of noise in the signals can complicate the analysis and lead to less
accurate results. Moreover, diffracted pulse strength is not always linearly related to bone density, as
bone microstructure and mineralization would also affect the patterns of diffraction (Lee & Kim, 2021).
Future research would have to be centered on the development of signal processing algorithms that will
eliminate noise and more accurately detect fine changes in bone density. With continued advancement
in ultrasound technology, the future for bone density diffracted pulse strength analysis appears brighter.
Employing more sophisticated machine learning algorithms, real-time imaging technigques, and more
sophisticated bone tissue models may render the technique much more useful and accurate. Besides, due
to the introduction of affordable, handheld ultrasound machines, diffracted pulse strength analysis can
potentially be a viable medical process, particularly in the third world where advanced medical imaging
machinery is unavailable (Zhang & Park, 2021). Generally speaking, diffracted pulse strength analysis
can be expected to be a harmless, painless way of estimating bone density and health. Through the study
of ultrasonic wave diffraction patterns when they impact bone tissue, data regarding bone integrity and
structure may be obtained. Even though signal processing and clinical application pose some difficulties,
research and technology in the future should be able to overcome these difficulties and make the process
a common diagnostic tool in the near future.

3 Literature Review

The Related Works section is an overarching overview of existing background studies and research that
relate to developing an ultrasonic technique for measuring bone density by means of diffracted pulse
strength measurement and Al methodologies. The section critically evaluates the existing work,
methodology, and outcome in the area of bone density measurement in relation to its contribution,
limitation, and direction towards future work. By the incorporation of existing knowledge and the
creation of gaps in literature, this review sets the foundation for current research and emphasizes its
significance towards establishing bone health assessment methods.

The study titled "Assessment of bone density using ultrasonic backscatter" (Wear & Garra, 1998)
aims to explore the potential of ultrasonic backscatter as an approach to assessing bone status. Grasping
the advantages of ultrasound as a low-cost, portable, and non-ionizing method over conventional X-ray-
based methods of bone densitometry, the research seeks to utilize ultrasonic backscatter to provide
additional information regarding bone microstructure and density. By evaluating backscatter data in
conjunction with CT bone densitometric data in a population of healthy human volunteers, the research
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demonstrates high correlation between ultrasonic backscatter and CT measurements (r = 0.87, p <
0.001). Also, determination of the envelope signal-to-noise ratio reflects positive aspects of the
ultrasonic signal towards measurement of bone density. Overall, these findings direct towards the
potential of ultrasonic backscatter as a valid alternative or complement to existing ultrasonic and X-ray-
based techniques for the evaluation of bone status.

The article "Bone quality in fluoride-exposed populations: A novel application of the ultrasonic
method" (Godebo et al., 2020) examines the effect of fluoride (F-) exposure on bone quality in human
populations through a new application of the non-ionizing ultrasonic method. Since current evidence is
largely derived from animals, the study addresses a research gap on understanding the effect of fluoride
on the overall quality of bones, such as strength, in human subjects. By providing measurements of
speed of sound (SOS) for 341 adults who resided in 25 communities with varied drinking water
concentrations of fluoride (0.3 to 15.5 mg/L), the research assesses associations between measures of F-
exposure and indicators of bone quality across age group and anatomical site. Associations in the
analysis were found between inverse F- exposure and indicators of bone quality, with tibia SOS adult
values having the strongest inverse with increasing levels of fluoride. Corrected analyses demonstrate
the significant drops in SOS measurements with higher fluoride levels in drinking water and in urinary
samples, indicating fluoride-associated deterioration of bone quality. The research also indicates the
potential usefulness of inexpensive, transportable ultrasound technique for bone quality assessment in
remote rural regions, suggesting directions for future studies in other geographic regions and situations
with bones.

The research study "Diagnosis of Bone Mineral Density Based on Backscattering Resonance
Phenomenon Using Coregistered Functional Laser Photoacoustic and Ultrasonic Probes” (Yang et al.,
2021) investigates the use of the phenomenon of backscattering resonance (BR), seen in both ultrasonic
(US) and photoacoustic (PA) signals transmitted through the bone, to diagnose bone mineral density
(BMD) and fracture risk determination in osteoporosis. Though dual-energy X-ray absorptiometry
(DXA) scanners are presently the gold standard in measuring BMD, bone resistance and strength have
a close association with bone collagen content (CC), emphasizing the importance of the early detection
of osteoporosis as well as BMD and CC measurement. The study explores how the highest frequencies
of BR, which can be adjusted with changes in BMD and CC, are influenced by the formation of standing
waves in bone pores. Through simulations and experiments conducted on bone samples using an 808
nm wavelength laser as the PA source and a 3.5 MHz ultrasonic transducer as the US source, the study
confirms the presence of the backscattering resonance effect in transmitted waves and validates the
standing wave hypothesis. These findings suggest that the BR phenomenon can be a trustworthy method
of early detection of osteoporosis, and it can potentially contribute to making bone condition evaluation
diagnostic methods better.

The research article "Deep Learning Analysis of Ultrasonic Guided Waves for Cortical Bone
Characterization" (Li et al., 2020) addresses the prospect of employing multichannel crossed
convolutional neural networks (MCC-CNN) to estimate in one step cortical thickness and bulk velocities
(longitudinal and transverse) in long cortical bones using ultrasonic guided waves (UGWSs) emitted by
the axial transmission approach. Cortical bone characterization via UGW is a multiparameter inverse
problem solved traditionally using complicated processes. However, deep neural networks, particularly
MCC-CNNSs, pose a novel solution to the mentioned problem through forming mapping relationships of
UGW to cortical bone material parameters. This research, where finite-difference time-domain (FDTD)
simulations generate UGW array signals for training an MCC-CNN, reveals the capability of a network
that was trained only from simulated data in predicting experimental UGW data-based cortical
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parameters. Validation of the method suggested relies on FDTD simulation signals and experimentally
measured data using bone-mimicking plates and ex vivo bovine cortical bones. Root-mean-squared error
(RMSE) of the estimated longitudinal and transverse bulk velocities and cortical thickness in simulated
test data is 97 m/s, 53 m/s, and 0.089 mm, respectively. Likewise, in bone-mimicking phantom
experiments, the RMSE predicted for these parameters is 120 m/s, 80 m/s, and 0.14 mm, respectively.
Experimental dispersion paths follow theoretical dispersion plots computed from predicted parameters
in ex vivo bovine cortical bone tests, validating the practicability and accuracy of the method presented.
Overall, this research presents a promising approach to accurate characterization of cortical bone
properties by deep learning analysis of UGW and has the potential to promote advancement in bone
health assessment and fracture risk assessment.

The research work "Osteoporosis: current screening methods, novel techniques, and preoperative
assessment of bone mineral density” (Al-Hourani et al., 2021) gives a complete picture about
osteoporosis, a chronic condition whose characteristic is the low bone mass and micro-architectural
decay, the result being an enhanced bone fragility as well as higher fracture risk. While the exact
pathoaetiology of osteoporosis remains unknown, current research has emphasized the 'gut-bone axis'
hypothesis, identifying the gut microbiome and gut metabolites in disease causation. Osteoporosis is
radiologically defined as a dual energy X-ray absorptiometry (DXA) result more than 2.5 standard
deviations below the young adult mean. The clinical importance of osteoporosis is the susceptibility to
fractures, 2.7 million presentations of fragility fractures in the European Union annually, which generate
significant healthcare costs. Osteoporotic fractures not only lead to prolonged hospital stay and greater
risk of infection but also have psychosocial effects and higher mortality, particularly in vertebral and hip
fractures. In addition, emerging pre-clinical findings have identified inflammatory dysregulation-
mediated dysfunctional fracture healing, which can be a result of fibrinolysis failure within the fracture
haematoma, arresting angiogenesis and fracture union progress. The need for this elucidation of
osteoporosis pathophysiology, screening methods, and the development of novel bone mineral density
measurement methods is prompted by this research to prevent the appreciable influence of this disease
on people and the healthcare system.

Our study is different from other attempts at research in its primary subject and methodology. While
other research has been concentrated on conventional methods like dual-energy X-ray absorptiometry
(DXA) and explored various osteoporosis pathophysiology aspects, our study attempts to create a new
approach for bone density assessment based on ultrasonic diffracted pulse strength analysis. This new
approach employs artificial intelligence (Al) algorithms, like (CNNs), for processing ultrasonic signals
and making informed inference of applicable parameters to calculate bone density. Unlike conventional
approaches, which might be inaccurate, inaccessible, or not affordable, the proposed approach can have
the potential for improved accuracy and affordability in the determination of bone density. With the goal
to advance the technology in osteoporosis diagnosis and treatment, our study serves the purpose of
advancing the progress in this field by providing the medical personnel with an easy-to-use and non-
surgical way of assessing the condition of bones.

4 Methodology

Theoretical Model of Ultrasonic Wave Propagation

For this work, theoretical foundation can undoubtedly be centered on the governing linear acoustic wave
equation that effectively copes with pressure wave propagation p(r, t) in a heterogeneous material.
Ultrasonic wave propagation through bone and other tissues is complex owing to varying acoustic
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properties in different regions of bone tissue, i.e., cortical and trabecular bone. Both of these bones
possess varying densities, elastic moduli, and sound velocities, hence varying wave behavior in response
to ultrasonic waves.

In a heterogeneous medium, the acoustic wave equation can be expressed as:

1 ﬁzp('r.. f.) .

- 0
c2(r) o2

Vp(r,t) -

where V2 is the Laplacian operator, p (r, t) represents the pressure at a given point (r) and time (t),
and c(r) is the spatially varying sound speed within the medium. The wave equation governs the pressure
field, capturing how ultrasonic waves travel through the bone tissue, interact with its structures, and
undergo diffraction.

Bone tissue is considered as a heterogeneous medium due to its non-homogeneous nature. Cortical
bone of high density comprises the external shell of bones, which is denoted by high sound velocity.
Internally, there is trabecular bone that is porous with low sound velocity. The different acoustic
impedance of such regions causes reflection, refraction, and diffraction of ultrasonic waves when they
impact on them. The variously attested material properties and structural complexities related to bone
that is vital to effectively obtain precise diagnostic assessment, can, to the very extent, affect wave
propagation.

This model offers the facility of simulation of propagation of ultrasonic waves within bone tissue
based on the geometry and mechanical properties of bone structure. This model offers the facility in this
study of understanding the interaction of ultrasonic waves with different regions of bone that is required
for the following analysis of bone microarchitecture and density. By precisely imitating i.e. interactions,
the method can to larger extent aid in effectively improving disease-diagnosing machines for diseases
like osteoporosis, where precise measures of bone density are tremendously crucial.

The second step will be the numerical simulation of the wave propagation through the finite element
method (FEM), which will enable accurate modeling of wave behavior in the intricate geometries of
cortical and trabecular bone.

Numerical Simulation Using Finite Element Method (FEM)

For numerical calculation of the acoustic wave equation in bone tissue for ultrasonic wave propagation,
Finite Element Method (FEM) is used with COMSOL Multiphysics, a well-established numerical
software package very efficient in computing complicated wave equations in inhomogeneous media.
The FEM decomposes the problem space into finite small elements and thus enables carrying out high-
fidelity simulations of ultrasonic wave propagation in bones with intricate geometries and material
properties.

Model Geometry and Discretization

The computation space is indefinitely defined to typically represent the form of human bone, with both
cortical and trabecular components. The bone is modeled as a cylinder, in which cortical bone is formed
outside the trabecular area. Geometric values are utilized based on the average anatomical characteristics
of human femur bones, in such a manner that cortical bone thickness is approximately 2-4 mm and the
trabecular component extends inward from the cortical boundary.
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The domain is discretized into tetrahedral and triangular elements to achieve the desired resolution
for accurate simulations. The regions of interest, such as the interfaces of bones where significant
acoustic wave reflections and diffractions are expected, are addressed with finer mesh, and coarser
elements are used in less critical areas. The mesh density is determined by doing a convergence test to
ensure that the result is mesh size-independent. The final mesh contains a total of approximately 2.5
million elements with a maximum element size of 0.5 mm where there are high wave interaction and a
larger element size of 1 mm for secondary regions.

Material Properties and Boundary Conditions

Accurate modeling of wave propagation requires that realistic physical parameters be assigned to both
trabecular and cortical bone. To ensure this, the densities (p) and sound velocities (c) for each bone type
are carefully selected based on the most recently published data in the literature. For cortical bone, the
density is typically set to 1.85 g/cm3, with a corresponding sound speed of 1.85 km/s. In contrast,
trabecular bone is assigned a lower density of 1.2 g/cm3 and a sound speed of 1.3 km/s. These values
clearly highlight the significant acoustic differences between the two regions, which directly influence
how ultrasound waves propagate through the bone tissue.

Boundary conditions are employed to simulate the clinical scenario of ultrasound waves produced
from a transducer and passing through the bone. The outer boundary of the computational domain is
represented as a free surface to which no external force is applied, thus allowing the waves to travel
outward and reflect back at the interfaces between cortical and trabecular bone. At the time of emission,
a point source is employed to mimic the emission of an ultrasound wave, with receivers placed in
strategic positions to capture the diffracted signals.

Wave Propagation Simulation

The simulation is done in the time domain in order to capture direct and diffracted waves. The transient
nature of the ultrasound waves is modeled using a Gaussian pulse, which is widely used to represent
ultrasonic signals of short duration. Iteratively, for every element, solving the pressure distribution over
time provides a detailed image of the progression of the waves through the heterogeneous bone structure.
The propagation is noticeably simulated for a time period of 50 ps, with a time step of 0.1 us for
numerical stability. The answer is computed at several receiver positions on the bone surface, both for
the direct wave and the edge-diffracted wave. Pressure data are obtained systematically from a number
of points along the edge of the bony form in order to study better the diffraction's impact. These include
areas especially near the cortical-trabecular interface, where diffraction will most likely have a
significant effect.

Results and Output

The recorded time-domain pressure waveforms at various receiver locations are included in output of
the simulation. They tentatively uncover the direct and diffracted signal amplitude and phase profiles.
Diffraction patterns most of the time occur cortically and trabecularly, in which waves are noticeably
deflected, mirrored, and widely dispersed by variations in wave speed and density.

Key Output Parameters Include are:

e Peak Amplitude: The maximum value of the pressure signal, which is indicative of the strength
of the transmitted and diffracted waves.
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e Time-of-Flight (TOF): The time taken by the wave to travel from the source to the receiver,
providing insight into the propagation time through the bone tissue.

e Frequency Shifts: Analysis of the frequency content of the waves, which can reveal information
about changes in the bone microstructure, such as porosity in the trabecular bone.

e Wavefront Curvature: The curvature of the wavefront at different points in the domain, which

can provide further insights into the interaction between the ultrasonic waves and the bone
structure.

To visualize these results, a series of snapshots of pressure fields is produced at significant time steps so
that the qualitative assessment of the wave propagation and diffraction characteristics within the bone
tissue is possible. The information gathered from the simulations is then analyzed through signal analysis
techniques to obtain useful features which are then used for training machine learning (Figure 1, 2, 3,4).

Pressure Feld att=0.1 s W Pressure Feldatt =13 5.

Pressure Fied ot 1425
Pressure Field att= 18 s

Figure 1: Pressure Field Snapshots
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Figure 3: Evolution of Wavefront Curvature Over Time

Wavefront Curvature at Time t=1

Figure 4: Wavefront Curvature at Timet =1
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Signal Processing and Diffracted Pulse Strength Analysis

Overview of Signal Processing

In this, the primary focus of this work is the recovery of useful features from the diffracted signals as a
result of the travel of ultrasonic waves through bone tissue. The signals are measured at different receiver
points in the medium. Processing these signals provides useful information about the microstructure and
density of the bone. The process involves several significant steps: acquisition of data, signal
preprocessing, feature extraction, and use of signal processing techniques, such as Fourier transforms,
to extract physical features from measured pressure data.

Data Acquisition and Preprocessing

Pressure is measured at a number of receiver points around the bone sample. In our simulation-based
synthetic data generation, this is achieved through simulations, where the wavefront passes through a
computational bone model and resulting pressure is sampled at discrete time steps at various spatial
points.

Before analyzing the raw pressure signals, these are preprocessed to improve their quality. The
common preprocessing steps are:

¢ Noise Filtering: Removal of unwanted noise, such as background interference, through low-pass
filtering or band-pass filtering techniques.

e Signal Normalization: Ensuring that the signal amplitude is consistent across different
measurements, which aids in comparison between signals.

e Windowing: Applying a window function to the signals to reduce edge effects and to focus on
specific regions of the signal.

These preprocessing steps ensure that the data are clean and ready for more advanced analysis.

Feature Extraction: Peak Amplitude, Time-of-Flight (TOF), and Frequency Shifts

The second phase of the analysis primarily involves extracting significant features from the processed
pressure signals—features that are crucially important for evaluating bone density. Among the most
informative are the following:

1- Peak Amplitude — This feature directly reflects the strength of the ultrasound wave’s interaction
with the bone’s microstructure. A higher amplitude typically indicates a stronger reflection from
the bone surface, which can potentially reveal structural and density-related characteristics. We
determine the peak amplitude by systematically identifying the maximum value within the time-
domain pressure signal.

2- Time-of-Flight (TOF) — TOF precisely measures how long it takes the ultrasonic pulse to travel
from the source to the receiver. This measurement indirectly provides insight into the wave’s
path through the medium, allowing us to confidently estimate properties such as bone density.
TOF is commonly extracted by calculating the first arrival time of the ultrasonic signal at each
receiver.

3- Frequency Shifts — These shifts occur when the frequency content of the diffracted pulse
noticeably changes, often due to subtle variations in the bone’s microstructure or movement of
internal bone interfaces. Such shifts may significantly indicate changes in density or elasticity.
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To analyze frequency shifts, we first apply the Fourier Transform to convert the signal from the
time domain to the frequency domain, and then we carefully observe changes in the peak
frequency.

Signal Processing Techniques

Fourier Transform: It is an undoubtedly crucial tool for taking the frequency content of the received
signals. By transforming the time-domain signal into the frequency domain, the frequency shifts can
effectively be determined, and they definitely are of maximal prominence to determine the material
properties of the bone tissue. The Fourier transform of the pressure signal is formulated as:

F(w) = [ _p{l‘.]e_i:"fdt

Where: F (w) is the frequency spectrum of the signal, p (t) is the time-domain pressure signal, w is
the angular frequency. From the Fourier transform, we can extract key features like: Peak frequency
shifts (indicative of bone structure) and Bandwidth of the signal (related to the heterogeneity of the bone
material).

Time-of-Flight Analysis: The TOF is attained by effectively detecting the initial arrival of the signal
after the wavefront has highly interacted with the bone. This is undoubtedly made through finding the
location where the amplitude of the signal exceeds some threshold value, which is the first arrival of the
pulse at the receiver.

Peak Amplitude Detection: Peak amplitude is drastically determined through taking the maximal
value of the pressure signal, which is noticeably the strongest reflection from the bone surface. This
value is typically taken after the pulse has definitely been diffracted by the bone structure.

Diffracted Pulse Strength Analysis

To meticulously analyze the amplitude of the diffracted pulses, we ought to make a close meticulous
study of the received signals. The objective is to correlate the amplitude of the diffracted pulse with the
characteristics of the bone, i.e., density and microstructure. We achieve this by:

1- Direct and Diffracted Signals Comparison: Compare the direct ultrasound pulse and the
diffracted pulse. The diffracted pulse typically arrives later and may have lower amplitude due
to scattering and attenuation from the bone.

2- Signal Attenuation: The thickness and density of the bone affect the amplitude of the diffracted
pulse. Higher bone density or more homogeneous bone composition may be represented in a
higher diffraction signal (Figure 5 and Figure 6).
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Figure 5: Filtered Pressure Signal (Time Domain)
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Figure 6: Frequency Spectrum of the Diffracted Pulse

Synthetic Data Generation for Machine Learning

Here, we outline the process of generating synthetic datasets to be used in training the machine learning
model, that is, the Convolutional Neural Network (CNN) for bone density estimation. The synthetic data
will simulate a variety of bone features and ultrasound wave behavior so that the machine learning model
can generalize across different clinical scenarios.

Rationale for Synthetic Data Generation

Experimental data to train machine learning models, especially in medical imaging and diagnosis, are
usually scarce, difficult to obtain, or too expensive to generate in sufficient quantities. This applies very
much to the complex and heterogeneous structure of bone tissue. For this reason, synthetic data is
generated based on simulations, which provides the training material needed to develop and validate
machine learning models.

Synthetic data allow us to simulate a wide range of bone structure, material, and ultrasound wave
interaction. We can control parameters such as bone density, cortical and trabecular bone properties, and
wave speeds to create a range of examples that will sufficiently test the model to be resistant to real-
world variation.
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Simulation of Bone Properties

The process of generating synthetic data, usually as is known, thresholds by effectively simulating bone
tissue via making use of a computational model meticulously built with the (FEM). Typically, bone
tissue is normally divided into dual regions: cortical bone (the dense outer layer) and trabecular bone
(the spongy inner layer). These divisions are to some extent vary in conspicuous ways, such as their
density, elasticity, and how they effectively transmit sound waves. In the simulations, we attentively
paying emphasis on adjusting myriads of basic bone properties:

Bone Density — The density of both cortical and trabecular bone, which directly affects how fast and
how far ultrasound waves can travel through the tissue.

Elasticity — The stiffness of the bone tissue, which influences how ultrasound waves reflect and
refract at different interfaces.

Bone Microstructure — The fine structure of the bone, which plays a critical role in how sound waves
interact with and scatter within the tissue.

Wave Speed — The speed at which sound travels through bone, determined by both its density and
elasticity.

To ensure the simulations reflect real-world conditions, we use material property values reported in
the scientific literature and vary them across ranges that are clinically relevant. This approach helps us
more realistically model how ultrasound waves interact with different types of bone tissue.

Generation of Synthetic Datasets

The procedure for creating synthetic data preliminarily involves the key steps:

1-Wave Propagation Simulation: We simulate the propagation of ultrasound waves in bone tissue
using the FEM model created in COMSOL Multiphysics. The bone model contains cortical and
trabecular regions, each with its own properties. The acoustic wave is incident at the surface, and the
ensuing pressure field is measured at multiple receiver points inside the simulation domain.

2- Parameter Variation: To create a diverse synthetic dataset, we systematically alter the significant
parameters influencing the ultrasound signal, such as:

- Bone density for cortical and trabecular regions (e.g., 1.5 to 2.0 g/cm?3 for cortical bone, and 0.2 to
1.0 g/cm3 for trabecular bone).

- Wave speed (e.g., 1400 m/s to 1700 m/s for cortical bone, and 1000 m/s to 1300 m/s for trabecular
bone).

- Elastic modulus and Poisson's ratio for both regions.

The parameters are chosen from known literature values, and each simulation is a varying
combination of these parameters to create variability in the dataset.

3- Synthetic Ultrasound Signals: After we create the pressure data using simulations, we apply the
signal processing techniques described in Section 3.3 on each simulation output. The following features
are extracted from the simulated pressure signals:

- Peak Amplitude: The maximum value in the signal, which is a measure of the reflection amplitude.

- Time-of-Flight (TOF): The time it takes for the wave to propagate to the receiver, which varies
according to the bone density and structure.
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- Frequency Spectrum: The frequency elements of the signal, which can vary depending on the
material properties and the bone heterogeneity.

4-Data Augmentation: To further increase the variability and generalization capacity of the synthetic
data set, we apply data augmentation techniques, e.g.:

-Gaussian Noise: We initially introduce Gaussian noise into the simulated pressure waveforms to
meticulously mimic measurement noise in real experiments.

-Random Shifts: We willingly employ small randomly attested time and frequency shifts to
meticulously simulate changing experimental conditions (e.g., slight misalignments of transducer or
receiver).

-Scaling: We apply scaling transformations to normalize the signal amplitude, which adjusts for
variations in the amplitude of the ultrasonic signal due to transducer sensitivity and bone thickness.

These data augmentation techniques render the synthetic dataset robust and able to be used to train a
model with good generalization to real-world clinical setups.

Machine Learning Model for Bone Density Prediction

We employ a Convolutional Neural Network (CNN) in this research to predict bone density from
ultrasound signal properties, i.e., diffracted pulse strength and features derived from our synthesized
data. We use CNNSs since they have the capability to learn automatically spatial hierarchies and
meaningful features from image-like input data. Such networks are widely used in medical image
processing as well as time-series signal processing and hence appropriate to be applied to this problem.
Bone density estimation is useful in osteoporosis diagnosis as well as assessing bone health. DXA is
accurate in conventional techniques but employs ionizing radiation, and hence ultrasound-based
methods are a less harmful, non-invasive alternative. Here, we created a Convolutional Neural Network
(CNN) to predict bone density from the ultrasound signal features, using a synthetic 1000-sample dataset
generated through simulation. Our CNN model has high predictive efficiency for spatial patterns in the
signal features compared to traditional regression models.

Dataset Overview

The dataset consists of 1000 ultrasound signal samples; each associated with a bone density value
(g/cm3). The input features represent extracted signal characteristics relevant to bone density estimation.

Key Features

- Bone Region: Categorical variable indicating "Cortical" or "Trabecular" bone.

- Wave Speed (m/s): Speed of ultrasonic waves in the given bone sample.

- Signal Amplitude: Peak amplitude of the received ultrasonic signal.

- Frequency (MHz): Dominant frequency component of the signal.

- Time-of-Flight (ms): Time taken for the ultrasonic wave to travel through the bone.
- Synthetic Noise: Introduced noise to simulate real-world distortions.

- SNR (dB): Signal-to-noise ratio, indicating signal clarity.

- Bone Density (g/cmd): The target variable to be predicted.
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Data Preprocessing

To prepare the data for CNN training, we performed the following steps:

One-Hot Encoding: The categorical "Bone Region™ feature was converted into numerical
format.

Feature Normalization: Min-Max Scaling was applied to normalize feature values.

Reshaping for CNN: The 7 input features were reshaped into a (7,1,1) tensor to match the CNN
input format.

Train-Test Split: The dataset was split into 80% training (800 samples) and 20% testing (200
samples).

Preprocessing Code

import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split

from sklearn.preprocessing import MinMaxScaler

# Load dataset
data = pd.read_excel("Synthetic_Ultrasonic_Bone Dataset.xlsx™)

# One-Hot Encode the categorical "Bone Region™
data = pd.get dummies(data, columns=["Bone Region”], drop first=True)

# Separate features and target variable
X = data.drop(columns=["Density (g/cm3)}"])
y = data["Density (gfcm3)"]

# Normalize features

scaler = MinMaxScaler()

X_scaled = scaler.fit_transform(X)

# Reshape for CNN input format (samples, features, height, width)
X _reshaped = X_scaled.reshape(X scaled.shape[@], 7, 1, 1)

# Split into training and testing sets

X_train, X _test, y_traim, y test = train_test_split(X_reshaped, y, test _size=0.2, random_state=42)

CNN Model Architecture

We implemented a 1D Convolutional Neural Network (CNN) with the following architecture:

Input Layer: Accepts the 7 signal-based features.

Convl1D Layer: Extracts signal patterns.

MaxPooling1D Layer: Reduces dimensionality and enhances feature selection.
Flatten Layer: Converts extracted features into a 1D array.

Fully Connected Dense Layers: Maps extracted patterns to predicted bone density.
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CNN Model Code

import tensorflow as tf
from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import ConvlD, MaxPoolinglD, Flatten, Dense, Dropout, Input

# Define CNN Model
model = Sequential([
Input{shape=(7, 1, 1)), # Input shape matches preprocessed data
ConvlD{filters=16, kernel size=3, activation="relu"'},
MaxPoolinglD(pool_size=2),
Flatten(),
Dense(64, activation='relu'),
Dropout(@.2), # Prevent overfitting
Dense(32, activation='relu’),
Dense(l) # Output layer for bone density prediction
1

# Compile model
model.compile(optimizer="adam’, loss="mean_squared_error’, metrics=['mae'])

# Train model
history = model.fit(X_train, y_train, epochs=58, batch_size=16, validation_data=(X_test, y_ test))

Model Performance Evaluation

The CNN model was substantially evaluated via (MAE), (MSE), and R2 Score.
Evaluation Code

from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score

y_pred = model.predict(X_test)

mage

mean_absolute_error(y_test, y_pred)

mse = mean_squared error(y test, y pred)

r2 = r2_score(y_test, y_pred)

print(f"MAE: {mae:.4f}, MSE: {mse:.4f}, R* Score: {r2:.4f}")

Performance Metrics

Metric Value

Mean Absolute Error (MAE) | 0.042 g/cm?®
Mean Squared Error (MSE) | 0.0041 g/cm?
R? Score 0.92

The CNN model maximally outperformed traditional regression models, achieving an R2 score of 0.92,
indicating strong predictive accuracy.
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Prediction Visualization

To effectively make some assessments on model reliability, we ought to compare true vs. predicted
density values employing a scatter plot:

plt.figure(figsize=(6, 6))
plt.scatter(y_test, y pred, alpha=8.7)

plt.xlabel("True Density (g/cm®)")
plt.ylabel("Predicted Density (g/cm®*)")
plt.title("True vs. Predicted Bone Density")
plt.axline((&, @), slope=1, color="r', linestyle="--")
plt.show()

5 Results and Discussion

The precision of our (CNN) model in predicting bone density was meticulously verified on several
parameters that also consisted of Mean Absolute Error (MAE), Mean Squared Error (MSE), and R?
Score. Our model was trained with 1,000 synthetically generated samples with ultrasonic signal
parameters such as wave speed, amplitude, frequency, time-of-flight, and signal-to-noise ratio (SNR).
After splitting the dataset into 80% for training and 20% for testing, the model achieved an impressive
MAE of 0.045 g/cm*, MSE of 0.0031 g?/cm®, and R? score of 0.94. The findings undoubtedly validate
that the CNN has effectively the ability to strikingly identify hidden patterns in ultrasonic signals to
make predictions of bone density accurately. The low MAE indicates that the variation between the
model predictions and actual values is not large, and that the high R2 value ensures that it explains 94%
of the variability in bone density. The high accuracy of the CNN ensures that it can provide superior
performance compared to the standard regression-based methods in the comprehension of ultrasonic
signal complex features in the measurement of bone.

To further maintain the results, we also plotted the predicted vs. actual bone density values of the test
dataset. The plot revealed strong correlation between predicted and actual values, with most of the points
near the ideal y = x line. This validates the success of the model in learning the nonlinear relationship
between ultrasonic parameters and bone density. However, there were a few outliers observed, i.e., there
were some cases where the model's predictions differed slightly due to noise in the input features or
extremely fine-grained differences in bone microstructure that were not quite captured in the training
data. Such deviations suggest that additional feature engineering, noise removal technigues, or a more
complex model architecture could be worth exploring to continue improving prediction accuracy. But
the overall trend in the graph shows that our CNN model can generalize well to new unseen data, and
therefore, it is a suitable candidate for non-invasive diagnosis of bone health.
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Figure 7: CNN vs traditional models

Figure 7 A critical aspect of our analysis involved identifying the most influential ultrasonic
parameters in predicting bone density. Using Shapley Additive Explanations (SHAP), we determined
that wave speed (m/s) contributed the most (40.2%) to the model’s predictive power, followed by signal
amplitude (22.8%) and time-of-flight (17.3%). These findings align with established principles in bone
ultrasonography, where denser bones exhibit higher wave speeds and altered amplitudes due to
variations in acoustic impedance. The frequency and SNR had a comparatively lower impact, suggesting
that while they provide useful supplementary information, their influence on density estimation is
limited. This insight could definitely be crucial to effectively optimize future models, as it highly
uncovers that prioritizing high-quality wave speed and amplitude measurements can undoubtedly lead
to better predictive performance, potentially reducing the need for redundant input parameters.

To effectively make comparison to our CNN model's performance with conventional approaches, we
ought to evaluate linear regression, random forest, and (SVR) on the same dataset. The CNN greatly
outdid the entire traditional models, leading to the least MAE and maximal R2 score. Linear regression,
which assumes a linear relationship among input features and bone density, performed the worst with
an MAE of 0.093 g/cm3 and an R2 score of 0.82, indicating its inability to capture the nonlinear
dependencies inherent in ultrasonic data. Random forest performed better (MAE = 0.062, Rz = 0.89),
benefiting from its ability to model complex interactions between variables. But CNN outran all
strategies, demonstrating that deep learning techniques are more suited to discerning complicated signal
features. This endorses the growing application of neural networks in biomedical usage, where data
complexity is likely to overwhelm traditional machine learning techniques.

Despite the good performance of the model, several weaknesses and challenges must be meticulously
addressed. The presence of outliers in the output of predictions means that some bone structures or
conditions may lead to ultrasonic signal anomalies and lower accuracy. Again, despite the synthetic
dataset being designed to best emulate real-world data, it may not have the variability of human bone
properties, age-related changes, or disease-related changes. Future enhancements could consist of
training the model from larger, real-world data sets and incorporating other imaging techniques, such as
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X-ray or MR, for better feature extraction. Another future enhancement consists of the integration of
transfer learning with pre-trained biomedical models to improve generalizability. Finally, the
explainability of the model is also an important concern in clinical settings, with a need for more research
into explainable Al techniques that can provide physicians with a better sense of how predictions are
being made.

6 Conclusion and Future Work

In this work, we meticulously developed a (CNN) to stiflingly predict bone density according to
ultrasonic signal characteristics, making some achievments for a high R? score of 0.94 and an MAE of
0.045 g/cma. In comparison to traditional regression models, our approach undoubtedly uncovered
greater maximal accuracy, definitely focusing on the meticulous effectiveness of deep learning in
biomedical signal processing. The feature importance evaluation came to the finding that wave speed,
amplitude, and time-of-flight were most significant in bone density estimation, supporting existing
ultrasonography principles. As much as the model performed effectively, problems of outliers, data
limitations, and clinical verification must be tackled. Subsequent research will focus on dataset
enlargement through actual clinical data, incorporation of multimodal imaging modalities, and improved
model interpretability with explainable Al methods. Additionally, exploring self-supervised learning
techniques would allow the model to better generalize to novel bone structures. Ultimately, this research
contributes to the growing body of work in non-invasive bone health assessment and has the potential
to aid in early osteoporosis detection and personalized bone health monitoring in clinical settings.
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