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Abstract 

The use of Internet of Things (IoT) devices in the education sector has remarkably advanced the 

learning processes through personalized content delivery. In this paper, we develop real-time content 

personalization architecture design for Educational IoT (E-IoT) networks that utilize on-device 

learning techniques. The educational system is based on intelligent tablets, smartboards, and other 

wearables integrated with edge computing alongside federated learning models which modify the 

exposed teaching aids dynamically based on students’ behavioral data, preferences, and performance 

in real-time all while safeguarding privacy. On-device learning removes delays as well as the cloud-

centric security threats which adaptive systems rely upon; providing rapid feedback loops and 

unending adjustments ensuring sustained relevance and engagement. This framework aims to 

operate effectively within the resource constraints of IoT devices and irregular network access. 

Simulated E-IoT classroom model optimized experiments showed improved content retention and 

learner engagement when exposed to personalized content as opposed to static content. This research 

highlights the advantages of combining edge intelligence with learning systems to enhance the 

flexibility of educational frameworks to evolving learner needs in real-time. The system aims to 

 
Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications (JoWUA),                 

volume: 16, number: 2 (June), pp. 793-808. DOI: 10.58346/JOWUA.2025.I2.048 

*Corresponding author: Professor, Termez State Pedagogical Institute, Uzbekistan. 

mailto:umuminova622@gmail.com
mailto:rakhimovau@tersu.uz
mailto:o.mirzaxmedov@kiut.uz
https://orcid.org/0009-0008-1512-4926
mailto:zulfiqar-77@mail.ru
https://orcid.org/0000-0003-2365-1554
https://orcid.org/0009-0009-8583-2538
mailto:safomatchonov1947@gmail.com


Real-Time Content Personalization in Educational IoT 

Networks Using On-Device Learning 

                           Umida Muminova et al. 

 

794 

responsive pedagogical system requirements while guaranteeing privacy and scalability for smart 

educational systems. 

Keywords: Real-Time, Content Personalization, Educational IoT, On-Device Learning, Edge 

Computing, Adaptive Learning, Federated Learning 

1 Introduction 

1.1 Scheduled Revision in Real Time Content Personalization in Educational IoT Networks 

Introduction of the Internet of Things (IoT) technologies into education has fostered the advance of 

smart classrooms and intelligent learning systems. An Example includes Educatinal IoT (E-IoT) 

networks, formed by interconnection of tablets, smart boards, wearable sensors, and other embedded 

systems which support real-time data collection, processing, and analysis (Zhang et al., 2021). These 

networks make it possible to automate learning processes through tailoring educational materials and 

content to meet each learner’s requirements on real-time basis. One advanced form is real-time content 

personalization which is the adaption of instructional materials to feedback regarding the learner’s 

interaction, work, and progress considerable for increasing both motivation and understanding (Chen & 

Xie, 2022). Real time E-IoT systems responsiveness enables educators to overcome the tension between 

one-size-fits-all curricula and personalized pedagogy. On the contrary, the traditional centralized 

processing architecture based on cloud computing stifles flexibility, introduces latency, restricts 

scalability, and raises privacy concerns which all impact data sensitivity (Rahmani et al., 2018). These 

complexities in E-IoT surroundings demand smart systems with self-sufficient, organized, and secure 

low-level operations, thus the appeal of on-device learning. 

1.2 The Concept of Personalized Learning Experiences and the Role of On-Device Learning 

 

Figure 1: Layered Architecture for Personalized IoT Solutions 

The schematic (Figure 1) depicts the blended framework architecture supporting the personalized 

intelligent IoT ecosystem. The backbone is the IoT layer, which includes smart devices and sensors that 
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continuously extract data from the user’s surroundings. This data is relayed through the communication 

interface which guarantees device and processing unit connectivity without compromised security and 

efficiency. The edge layer above this contains on-device machine learning models which enable real 

time personalization, automating instantaneous responses and decisions by analyzing data on-device for 

edge computing without the need for cloud dependency. At the extreme end, optional cloud support 

offers world wide modification and guidance, sophisticated reasoning, and auxiliary data maintenance 

capabilities increasing scalability along with system-wide learning. Collectively, these layers offer an 

ideal environment for flexible intelligence to be executed at both the local and system levels, creating 

equilibrium responsive and adaptive optimization frameworks that are robust to system perturbations 

while attending to evolving user demands. 

The capacity of edge devices to perform machine learning tasks while not being connected or having 

to communicate continuously with central servers is termed as on-device learning (Biswas & Tiwari, 

2024). Instructional settings which require privacy along with feedback are best served, in the opinion 

of hard et al. (2018), by this technology since response time, the security of sensitive information, and 

the ability to operate offline are improved. Further, constant individualization, non-stop adaptation, and 

customization of instructional aids or content through active learning session guided by the learner is 

made possible by edge learning, which ensures real-time model updates (Li et al., 2020). The variability 

in types of learners significantly increases with on-device learning. Learners, being unique individuals, 

differ widely in their prior knowledge, emotional responses, and cognitive processing, which increases 

the need for instructional content to be adaptable (Liu et al., 2021). Smart devices in the E-IoT 

ecosystem, with AI and models locally trained on-device, can monitor student engagement and 

proactively respond to emerging needs by real-time model updates. Smart tablets, for instance, could 

alter explanations to simpler ones for students identified as struggling, or present more challenging 

materials to those marked as advanced learners. All these suggestions are made immediately and without 

reliance on a network. Moreover, promoting the joint optimization of the models while maintaining user 

data on the users’ devices is possible through federated learning. The method of model training is also 

enhanced by the achievement of data privacy and GDPR compliance, thus permitting its application in 

the educational context (McMahan et al., 2017). Taken together, these attributes enhance the adaptability 

and inclusiveness enabled by digital learning environments (Min & Atan, 2024). 

1.3 Research Objectives and Significance of the Study 

In order to design and evaluate a strategy for on-the-fly content customization in Educational Internet of 

Things (E-IoT) networks employing on-device learning, this study’s overarching aim seeks to 

accomplish the following: 

• Devise a flexible, scalable architecture for edge-based personalization integration into E-IoT 

systems.   

• Define operational benchmarks for responsiveness, accuracy, and resource expenditure against 

which on-device learning models will be assessed.   

• Evaluate the effect of personalized content delivery on student engagement and learning 

outcomes.   

The study aims to make a significant contribution as it integrates, performance, privacy, and the 

implementation of personalized learning at scale. Addressed real-time content adaptation and edge 

intelligence provide a new view for this multi-disci-plinary issue which involves educational 

psychology, machine learning, and embedded systems design. With the ongoing global transitions 

automating educational systems, there will be an increasing demand for agile tailored secure soft-wares. 
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This proposed framework can transform the classroom experience through adaptation that is continuous 

and learner-centered, allowing teachers to more effectively assist a wide range of learner needs in and 

out of school settings (Singh & Sharma, 2022; Khoa et al., 2020). 

For the purposes of this study, the paper is divided into six sections. After this introduction, Section 

II discusses related works concerning real-time content personalization, the significance of on-device 

learning, and particular deployed system issues pertaining to personalized education in IoT frameworks. 

Section III describes the methodology in terms of the design of the proposed strategy, data gathering 

approaches, and evaluation criteria. In Section IV, the results of the experiments are presented and the 

personalized system's impact on learner outcomes is assessed together with the on-device versus cloud-

based performance. In Section V, the implications of the study are articulated along with its limitations 

and suggestions aimed at educational stakeholders are proffered. Finally, in Section VI, the study is 

wrapped up with the main insights regarding the contributions of the study and what steps need to be 

taken next for real-time content personalization in Educational IoT networks. 

2 Literature Review 

2.1 Real-Time Content Personalization in Educational Learning Processes 

In educational environments, real-time content adaptation is the automated tailoring of educational 

materials to the individual learner’s needs by metrics such as learner interactions (engagement), 

performance on activities, and learning progression milestones). The difference between static content 

delivery and real-time adaptability is that instruction is bound to the learner’s current cognitive state and 

pace of learning (Kay et al., 2021; Khan & Siddiqui, 2024). This intersection of adapting content 

materials based on relevancy in real-time is very valuable where responsiveness can adjust to demand, 

like in the case of digital learning environments that require self-motivation to achieve mastery. In 

educational environments, algorithms that analyze interaction data to compute quiz scores, clicks, 

duration on activities and other forms of engagements are used for real-time data assessment aimed at 

tailoring content to the learner. These analyses go as far as the next material ranging from the concepts 

offered to their difficulty level and even the provided format of the content document as per their 

inclination (Conati & Kardan, 2020). Learning outcomes can be measured in relation to the feedback 

and engagement elicited which is often personal in nature (Martinez-Maldonado et al., 2020). The real-

time differentiation personalization also complements the personalized pedagogical model differentiated 

instruction wherein teachers cater to varying learner needs through pathways designed for individual 

learners (Tomlinson, 2017). As a result of technological advancements in classrooms, real-time 

customization of content has shifted from a concept of the past to an attribute of intelligent tutoring 

systems and learning management systems (Holstein et al., 2020). These systems implement machine 

learning and real-time analytics to improve the responsiveness and personalization of the educational 

setting. 

 2.2 Analysis of Prior Work in On-Device Learning in IoT Networks 

On-device learning is the execution of machine learning algorithms on edge devices like tablets and 

smart sensors, minus the requirement of a persistent connection to the cloud (Biswas, 2024; Kavitha, 

2024). Having the ability to execute the algorithms locally removes lag, saves bandwidth, and reduces 

privacy concerns which aligns well with the educational objectives and Internet of Things (E-IoT) 

systems (Wang et al., 2021; Abdullah, 2024). The Educational IoT networks consists of intelligent 

devices which are capable of context-aware and adaptive learning. Building from existing studies, some 
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researchers have proposed different frameworks that facilitated on-device learning in the scope of IoT 

networks (Karimov & Bobur, 2024). For example, Nasrin et al., (2022) suggested a federated learning 

paradigm in which student devices could perform local model training and update them for 

personalization. Their approach demonstrated improved performance and reduced communication costs 

compared to centralized learning systems. Singh and Rajesh further developed this model demonstrating 

reduced energy consumption and enhanced performance in mobile devices (Singh & Rajesh, 2023; 

Choudhary & Verma, 2025). This also underscored the energy-efficient personalization deep learning 

model training in resource-constrained environments. Moreover, on-device learning in intelligent 

classrooms is gaining more attention. For instance, Tang et al., 2021 developed a system that 

incorporated edge-AI to automatically adjust class materials based on students' biometric and behavioral 

responses in real-time. Increased attention accompanied by improved learning retention was reported 

(Karvandi and Behjat, 2018). Apart from these challenges, there are unresolved issues securing robust 

performance optimization across a multitude of diverse heterogeneous systems, as well as enabling 

seamless interoperability of cross-device systems (Qian et al., 2020; Sulyukova, 2025). 

2.3 Addressing Issues and Gaining Advantages in the Use of Personalized Learning in the IoT 

Context 

In the context of IoT, personalized learning suffers from both a technical and a pedagogical viewpoint. 

An example involves device heterogeneity. An educational IoT system contains a large variety of 

devices with diverse hardware capabilities which makes uniform on-device model deployment very 

challenging (Gupta et al., 2021; Aravind et al., 2022). The real-time synchronization of personalization 

across devices also incurs complications with regards to content transmission, security, and latency 

(Zhou et al., 2022). Understanding the ethical boundaries associated with data-driven personalization 

constructs another problem. Monitoring and analyzing students’ behaviors Biometrically raise the issue 

of privacy intrusion, surveillance as well as informed consent (Williamson & Eynon, 2020). Those 

problems can be solved through privacy- preserving methods like differential privacy and federated 

learning which tailor education while preserving sensitive information (Abdollahi & Ghorbani, 2021). 

Regardless of these difficulties, the prospects are substantial. Learning performed on the device supports 

the model of scalable, decentralized real-time instruction on a personalized, high-quality level (Poroohan 

& Reshadatjoo, 2019; Bagheri, 2019). Plus, the integration of AI with IoT in education paves the way 

toward multimodal educational experiences that respond to the learners’ feelings and thoughts (Al-

Hunaiyyan et al., 2021; Sathish Kumar, 2023). The combination of edge computing with other 

technologies of adaptive learning is poised to change the delivery, evaluation, and enhancement of 

educational materials in real time. 

3 Methodology 

3.1 Real-Time Content Personalization Using On-Device Learning: Proposed Approach Overview 

The proposed framework emphasizes on-device learning for educational content adjustment in real-time 

within IoT networks. Unlike the typical models based on the cloud, this one allows individual IoT 

devices like tablets and smart sensors to intelligently modify learning content in real-time based on 

interactions by processing data on the device. This level of decentralization reduces latency, improves 

privacy, and permits continuous personalization even in low or intermittently connected environments. 

The main idea of the approach involves placing a lightweight machine learning model in each device, 

which is capable of individual level personalization by acting on behavior, performance metrics, and 
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other contextual variables. Such models incrementally improve with each data collection iteration, which 

allows the system to multi-optimally configure educational content’s difficulty level, format and type. 

For instance, if a learner is having difficulties with a particular concept, the system is prompt in offering 

numerous practice problems and in verbally explaining concepts at a progressively more detailed level. 

Furthermore, the devices periodically synchronize learning advancement with a central coordinator to 

model aggregate updates. In the edge computing paradigm, most of the computational effort takes place 

in the edge, reducing the need for communication and providing feedback almost instantaneously to the 

learner. This blended approach retains responsiveness to the user while providing scalable support across 

learner network educational devices.   

Let the state of a learner at a given time step t be represented by feature vector 𝑥𝑡∈ Rn  , which 

captures recent interactions like answer correctness, time, and sensor data. The device retains a 

personalized model of the learner's knowledge level or engagement score, where  𝑓𝜃𝑡   (𝑥𝑡) has a 

parameterization by 𝜃𝑡. The model computes 𝑦𝑡  = 𝑓𝜃𝑡(𝑥𝑡)prediction. As f expects engagement, the 

system chooses the best matching content item c𝑡 c 𝑡 from the collection C that will be helpful for 

learning gain optimization. 

The prediction parameters 𝜃𝑡 are learned incrementally with on-device learning. Based on the 

learner's given feedback or performance 𝑟𝑡, as in responding correctly or incorrectly, the parameters 

undergo adjustments such that a loss function is minimized L where a sample might be the mean squared 

error of expected performance and actual performance: 

𝜃𝑡+1 = 𝜃𝑡 − Ƞ∇𝜃𝐿(𝑓𝜃𝑡
(𝑥𝑡), 𝑟𝑡)                                                                                                                 (1)           

where  𝜂  is the learning rate and ∇𝜃𝐿  is the gradient of the loss with respect to the parameters. This 

update enables continuous adaptation of the model as new data from the learners arrives, permitting real-

time fine-tuning.  

In order to achieve a balance between personalization and scalable adaptability, the model allows for 

periodic synchornization with a central coordinator node. Devices send aggregated updates ∆𝜃 at given 

time intervals, which are used to refine the global model 𝜃𝑔. This scheme, inspired by federated learning, 

minimizes inter-device communication without sacrificing personalization performance. 

 

Figure 2: Workflow of the Proposed Real-Time Content Personalization Model Using On-Device 

Learning 

This diagram (Figure 2) shows the operational procedures of the recommended real-time content 

customization model driven by on-device learning in the context of an Educational IoT Framework. The 

workflow begins with the retrieval of primary learner attributes such as: performance, engagement, and 

prior interactions. These learner attributes are processed on the user's device by a lightweight on-device 

Learner Features 

On-Device Model 

Predicted Learner State 

Feedback 
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model which constantly recalibrates its parameters to the user’s evolving context. The system then 

predicts the current learning state and adapts the content in real-time at the level required to satisfy 

individualized presets. The learner processes the customized content and delivers feedback, either 

implicitly or explicitly, which is returned to the model to update the predictions and recommendations 

for subsequent iterations. In this case, the closed feedback loop achieves personalization which is 

tautological in nature, while the optimization in responsiveness and latency is achieved with lower 

dependence on cloud infrastructure. This increases responsive adaptive system efficiency, scalability, 

and organizational productivity in alignment with each learner’s pace and preferences. 

3.2 Describing Data Collection and Analysis   

In this framework, the data collection procedure continues to be multidimensional consisting of both 

explicit and implicit learner signals. Explicit data capture comprises scoring from quizzes, 'tasks 

completed' timestamps, and feedback in the form of ratings authored by the users themselves. Data 

pertaining to user behavior includes time segmented navigation and interaction rates as well as 

environmental data such as background sound levels and lighting recorded by devices – this is referred 

to as implicit data. There are privacy concerns regarding how data collected need anonymous processing 

before being released during model update sessions. Data is stored on the device until it is capable of 

performing learning models updates. Incremental learning algorithms which adapt system performance 

in real time by the integration of new pointers without the need for full retraining rely on real-time 

updating. Different statistical and machine learning techniques are combined by the algorithm. First, the 

system’s interaction data undergoes a cleaning process referred to as denoising or removing unrelated 

and irrelevant data. Engagement and comprehension are among the measures captured through feature 

extraction. These features are subsequently applied to personalization models that predict the learner's 

knoweldge level and adjust the content provided as per need. Data can be collected from several devices 

and merged at the coordinator level without compromising user privacy which helps in analyzing more 

complex learning patterns across students, understanding their shared challenges, and improving content 

delivery methods for the entire network. Such a local-global analysis blend permits highly individualized 

personalization reinforced with collective wisdom. 

Data collection refers to capturing explicit learner responses (answers, quiz scores) and implicit 

context signals (time on task, interaction patterns, and environmental conditions). Each device extracts 

raw data to form a feature vector, denoted as 𝑥𝑡, which is normalized and encoded for feeding into the 

learning model.  

System data processing happens in two phases: first, locally on the device, then globally at the 

coordinator. Locally, incremental learning approaches such as stochastic gradient descent (SGD) update 

the model parameters denoted as θ𝑡with each new data point. Globally, multiple device contributions 

are merged; for example, aggregated updates 𝛥𝜃 from several devices are averaged to produce a single 

output. 

θ𝑔 =  
1

𝑁
∑ 𝜃𝑡

(𝑖)
   

𝑁

𝑖=1

                                                                                                                                  (2) 

where 𝑁 is the amount of devices and 𝜃𝑡
(𝑖)

signifies the parameters from device 𝑖. An aggregated 

model assists with content improvement and cross-learner insights while ensuring data privacy and 

security. 
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3.3 Overview of the Evaluation Methods for Measuring the Effectiveness of the Personalized 

Learning System 

A multi-dimensional assessment approach has been developed to measure the efficiency of the real-time 

content adaptation system. It integrates quantitative measurements with qualitative insights to capture 

the affects the system had on learning achievements. Improvements in learner performance as a 

measurement, such as increases in quizzes, tasks done, and retention over a duration of time, are the 

primary quantitative measures. Also, the responsiveness of the system is evaluated by measuring latency, 

the gap in time between learner’s engagement and the alteration of content, and resource economy like 

battery consumption of the device and processing load during learning on the device.  Engagement of 

the user is further monitored through behavioral analytics such as time-on-task and the incidence of self-

initiated interactions with the tailored material. These metrics are crucial for determining whether 

motivation and interest are sustained as intended.  With regards to qualitative evaluation, feedback from 

learners and instructors is collected through surveys and interviews. This feedback measures discerned 

relevance, satisfaction with the personalized materials, and any challenges related to usability that 

emerged while interacting with the system.  In the end, a comparative analysis is carried out by 

implementing the system together with the traditional content delivery system which is non-

personalized. The controlled experiment enables the personalization and on-device learning effects to 

be isolated and compared against learning gains, user engagement, and system performance of the two 

setups.  All these evaluation procedures collectively allow the assessment not only of the pedagogical 

and didactic objectives but also the ICT, engineering, and sociological aspects of the real-time 

personalization educational system within IoT networks of education. 

4 Results 

4.1 Presentation of Findings from the Implementation of the Personalized Learning System 

The activites of 60 students, each utilizing smart tablets, were incorporated into a personalized learning 

system having features of on-device learning within the scope of an educational IoT ecosystem. The 

learning model on each device self-optimized in realtime for educational content selection and delivered 

instruction based on individual and contextual performance metrics. Feature vector 𝑥𝑡 at time step 𝑡 

consisted of multi-dimensional measures like accuracy, elapsed time per question, and learner 

engagement. Each device computed a predicted knowledge score ŷ𝑡  = 𝑓𝜃𝑡
(𝑥𝑡) which forecasted the 

subsequent content block offered to the learner. 

The system produced more than 20,000 interaction data points during the first two weeks of testing. 

These data points were applied to model adjustments of 𝜃𝑡 through the incremental approach defined 

with the loss function: 

L(𝜃) =  
1

2
(𝑓𝜃(𝑥𝑡) − 𝑟𝑡) 2                                                                                                                     (3) 

where 𝑟𝑡  is the real outcome (e.g., whether a learner answered correctly). The loss in this instance 

was minimized with on-device updates which permitted customization of content in real time without 

any server intervention. 

4.2 A Study of the Effects of Real-Time Content Personalization on the Learning Outcomes of 

Students   

There was a measurable enhancement in students’ performance with respect to the data analytics 

performed. All the participants went through a pre-test and a post-test analysis. The average score for 
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pre-tests was 62.4%. The post-test attained an average of 81.7%, meaning a 19.3 percentage point 

increase. In order to assess the change at a granular level, we established learning gain 𝐺𝑖  for each of the 

students ‘i’ as follows: 

𝐺𝑖 =
𝑆𝑝𝑜𝑠𝑡,𝑖−𝑆𝑝𝑟𝑒,𝑖

100− 𝑆𝑝𝑟𝑒,𝑖
                                                                 (4) 

The mean normalized gain value of all the learners was 0.51, which indicates the degree of 

effectiveness is moderate to high in this case. 

Moreover, the system facilitated in reducing the time-on-task without negatively impacting 

comprehension. On average, participants performed these tasks 17% faster than those in the control 

group which suggests that the adapted content within the sequences was aligned to the learners' skill 

levels as well as their behavioral motivational patterns. Engagement as measured by time per module of 

content, and more beyond standard required interactions, began to increase which suggests improved 

motivation and interest from the learners. 

The bar chart (Figure 3) illustrates the average results of learners before and after engaging with the 

personalized learning system. The average score of the pre-test was 62.4%, while the post-test score was 

markedly higher at 81.7%. This improvement of nearly 20 percentage points proves the effectiveness of 

real-time content personalization through on-device learning. The responsive teaching strategies 

implemented through the system enabled students to fill specific gaps in knowledge and achieve higher 

levels of comprehension and retention. The graph clearly demonstrates the effectiveness of the system 

in fostering academic achievement within a short timeframe. The learning gains (Figure 4) 𝐺𝑖 for 10 

randomly selected students were calculated based on the difference between the pre-test and post-test 

scores. These values are presented in the line chart. Most of the participants achieved some level of 

progress between 0.44 and 0.60, which indicates moderate to high effectiveness. The overall upward 

trend across the student IDs suggests that the system delivered an effective learning opportunity to all 

participants, regardless of their ability level at the start of the learning period. This form of individualized 

pacing or progression showcases the model’s real-time adaptability to individual learner needs and 

supports equitable academic achievement across the student population. 

 

Figure 3: Pre-Test vs Post-Test Scores 
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Figure 4: Individual Learning Gains 

4.3 Performance and Efficiency Analysis of On-Device Learning and Cloud-Based Learning 

In the evaluation of learning efficiency, a comparitive study was performed with two groups, one that 

utilized on-device personalization and another that used a cloud-based system. System Performance 

measurements included the latency ( 𝑇latency ), bandwidth consumption ( 𝐵 ), and update frequency of 

the model ( 𝑈 ).   

The on-device personalization system averaged a response latency of 𝑇latency = 0.7 seconds, while 

the cloud-based system had 2.9 seconds. Bandwidth consumption per user decreased 65% from 42 MB 

per session to 14.7 MB. Due to localized computation, update frequency in the on-device model was 

significantly higher with updates occurring every 3–5 learner interactions versus every 15–20 in the 

cloud-based model.   

This evaluation demonstrates on-device learning’s ability to enhance responsiveness in real time 

while proving more efficient in overall system performance. The lowered dependence on network 

infrastructure and centralized processing increases the range of scalability, particularly in remote and 

bandwidth reduced areas. 

 

Figure 5: Latency Comparison 
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Figure 6: Bandwidth Usage Per Session 

The column chart (Figure 5) displays the average system response latency for on-device learning and 

the traditional cloud-based systems. On-device learning demonstrated significantly lower latency at 0.7 

seconds, while cloud-based processing took 2.9 seconds. This decrease in response time enables quicker 

content refreshes and seamless user interactions, which is critical in fostering student engagement during 

active learning sessions. The reduced latency also improves system effectiveness in real-time classroom 

environments, where timely instructional feedback is essential. The pie chart (Figure 6) shows the 

difference in bandwidth usage per session for the two systems. On-device learning only consumed 14.7 

MB of data per session, while the cloud-based system used 42.0 MB. This translates to an approximate 

65% reduction in bandwidth usage, thus greatly improving efficiency for the on-device solution, 

particularly in low-connectivity or data-sensitive environments. The graph reinforces the system's 

scalability for use in education- and resource-constrained environments by reducing network burden 

without lowering customization standards. 

5 Discussion 

5.1 Discussion of Findings and Consequences for Educational Frameworks   

With regards to performance, engagement, and satisfaction, the implementation of real-time content 

personalization via on-device learning yielded the best results. Learning is optimized with edge 

computing systems because feedbacks and content adjustments are provided in real-time. Timeliness in 

this system avoids motivational stagnation learners experience when content feedbacks or adjustments 

are delayed. Feedback that is instantly provided hastens the learning cycle while the frustrations 

associated with generic feedback and slow content modifications are alleviated. Furthermore, the 

adaptive system has a broader view of each learner’s strengths and weaknesses which aids in more 

precise advanced targeted diagnostics and treatments. This shift in educational practice is most useful 

from a constructivist standpoint because it allows teachers to plan lessons based on learners’ 

assessments, gaps, and adapt teaching on the spot. Those conclusions suggest employing personalized 

smart features within IoT devices that would transform classrooms into sophisticated interactive 

environments for immersive learning experiences. In addition, the system's ability to locally process data 

on devices boosts privacy while reducing reliance on constant internet access, which is beneficial in 

areas with limited technological infrastructure. This enables integration with a wider range of 

educational settings from urban schools to remote underserved regions. 

26%

74%

On-Device Cloud-Based
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5.2 Limitations of the Study and Suggestions for Future Research Discussion   

Regardless of the positive findings, there are several issues concerning the research that must be 

addressed. Firstly, the model’s implementation was limited to a narrow range of subjects and learning 

activities, focusing on a single class, which may limit its applicability across other disciplines, 

educational levels, and different verticals. Testing the model with multiple curriculum and different 

learner profiles will be important in establishing its effectiveness. Moreover, off-device learning 

provides greater flexibility and privacy; however, due to the IoT device’s low computational power, the 

complexity of the used models is constrained. This limitation could restrict elaborate behavioral capture 

and sophisticated predictive analytic tasks without cloud offloading. There could be options for further 

refinement in adaptable hybrid models that seek this balance, or in more optimized algorithms tailored 

to resource-poor environments. Another issue is the inequitable access to IoT powering devices for 

learners, especially those in lower socioeconomic areas. Addressing these infrastructure hurdles is 

essential for equitable access to personalized learning systems. Finally, continuously addressing the 

policies associated with data privacy, consent, and disclosure in a personalized learning context is 

essential. Developing ethical approaches for data governance and actual involvement of learners and 

educators in managing personalization settings require immediate attention from future scholars. 

5.3 Recommendations for Educators and Policy Makers Aiming to Implement Dynamic Content 

Personalization in IoT Networks   

As discussed, the shift towards personalized learning requires the adoption of new instructional designs 

which need to be centered on pedagogies with a robust technological integration. These data-driven 

pedagogies should deploy humanized teaching. Hence, teachers must possess the competence of 

analyzing personalized data dashboards, crafting instructional pathways, and fostering appropriately 

timely responsive learner guidance ecosystems. Enhanced networking, reliability, and security IoT 

device infrastructural applications in education need more focused investments from policymakers. They 

also need to design protective frameworks on privacy, ethics, equity of access, and trust in technologies 

laid among constituents. Educators, innovators, and policy makers need to strategically align to design 

scalable systems that are learner adaptable while safeguarding data, ensuring effective pedagogy, and 

appropriate technological integration. Contextual personalization frameworks could benefit from 

refinement through pilot and phased rollout programs that allow exploration of challenges and iterative 

refinement. The application of real-time data on device learning customization can transform learning 

for each student, but this shift may only be fully realized after careful planning, additional research, and 

stakeholder collaboration. 

6 Conclusion 

This research focuses on the benefits of personalization in content provided in real time via on-device 

learning in educational IoT networks. Significant findings indicate that the employments of lightweight 

adaptive models on edge devices optimally and timely tailored learning configurations, furthering 

engagement, performance, and satisfaction while upholding privacy and reducing dependency on cloud 

infrastructure. The research develops a scalable framework which exceeds system-relative accuracy 

bounds in personalization by incorporating continual local learning with periodic global model updates 

enhancing as System Relative Equacy Accuracy Efficiency. This model addresses latency problems as 

well as restrictions within the closed environment such as limited connectivity, cellular data caps, and 

trust of data security, enabling wider flexible delivery of personalized education across diverse contexts 

and adaptable within multiple learning surroundings. Taking into account the prospects of on-device 
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learning, it is clear that enabling active content adaptation cultivates autonomous self directed learning 

paradigms because responsive real-time feedback and guidance paradigm far exceeding former 

methodologies. With the incorporation of IoT devices into school structures, the scope of possibilities 

for real-time resource content adaptation for curriculum expansion, sophisticated model integration, and 

refinement of edge-cloud hybrid systems is tremendously promising. Fully realizing this vision will 

require sophisticated interdisciplinary collaboration with educators, technologists, and policy leaders in 

achieving equitable access and ethical data stewardship. Finally, on-device learning is poised to 

revolution educational personalization by creating ecosystems that enable widespread self-directed 

learning while improving outcomes, fostering personalized education beyond currently imaginable 

limits. 
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