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Abstract  

Plant disease diagnosis remains a challenging problem in contemporary agriculture, as it relies on 

physical examination, which is labor-intensive, time-consuming, and often inaccurate at industrial 

or farmland sites. Timely, precise, and maskable diagnostic activity is increasingly needed to support 

the improvement of precision agriculture and food security worldwide. To address the need for fast, 

scalable, and trustworthy diagnostics, this paper introduces a context-aware IoT and Edge 

Computing solution based on a pruned and knowledge-distilled compressed Mask R-CNN model 

with a ResNet-50 backbone for real-time plant disease diagnosis. Pruning and knowledge distillation 

enable the system to be efficiently deployed on low-end edge devices, such as the Raspberry Pi and 

Jetson Nano. Contextual environmental data, such as temperature, humidity, and moisture, are 

combined with visual input to improve diagnostic performance under different field conditions. 

Low-power, low-latency wireless communication is facilitated through MQTT and dynamic 

frequency transmission based on detection events. The model was trained and validated on a 

benchmark dataset of diseases in tomato and sugarcane leaves, achieving 91.6% classification 

accuracy and an F1-score of 90.7%, with only a 2.5% accuracy loss compared to the uncompressed 

model. The inference latency was reduced to 220 ms in edge devices, with a 38% decrease in power 

consumption, all for eco-friendly operation. These findings validate the applicability of deep 

learning models in monitoring plant health in real, low-connectivity scenarios. The proposed 

solution facilitates early intervention, prevents pesticide misuse, and promotes a data-driven vision 

for smart agriculture. 

Keywords: Plant Disease Diagnosis, IoT, Edge Computing, Mask R-CNN, ResNet-50, Agriculture, 

Classification, Deep Learning.  

1 Introduction 

The agricultural industry accounted for half of India's employment and 19.9% of the country's gross 

domestic product in the fiscal year 2020–21. The most recent technical developments must support the 

high-yield agriculture sector. Insects and plant diseases cause significant crop losses in the agricultural 
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industry. By 2050, the world's population is projected to reach 9.2 billion, necessitating a 69.6% increase 

in food production (Friedrich, 2015). Wind, adverse weather conditions, drought, fungus, bacteria, 

viruses, and other pathogens cause significant damage to food crops. Plant diseases are the leading cause 

of crop losses globally, accounting for 70-80% of all losses (Wang et al., 2025). Plant diseases cause a 

significant amount of crop loss, which needs to be addressed. To ensure healthy and productive food 

crops, early detection of plant diseases enables farmers to develop effective defense mechanisms against 

them (Shi et al., 2024). Disease identification and eradication will further increase productivity. The 

Food and Agriculture Organization estimates that at least 40% of global agricultural production is lost 

annually due to plant diseases, resulting in significant economic losses, food shortages, and disruptions 

to agrarian trade (Silva & Almeida, 2024). These effects are particularly devastating in the developing 

world, where working farmers often lack access to early diagnosis, specialized agronomic advice, and 

advanced disease management technology. Plant diseases can spread rapidly, devastate entire fields, and 

undermine food security both locally and nationally in the absence of early detection and effective 

control (Rehman et al., 2025). 

Symptoms of yellow leaves, dark lesions, wilting leaves, and stunted plant growth associated with 

plant disease often become visually indistinguishable, making diagnosis at the field level difficult 

without the aid of laboratories (Mohan et al., 2023). Usually, when symptoms become apparent, the 

disease has progressed to a stage where it is no longer curable. Early, accurate, and timely plant disease 

identification is therefore vital to facilitate quick response measures, control pesticide abuse, reduce crop 

loss, and enable sustainable agriculture. In an era of climate unpredictability, which further increases the 

prevalence and volatility of diseases, it is more important than ever to invest in smart plant health 

monitoring systems for a more robust agricultural system of the future (Ganesh & Kannadhasan, 2025). 

Conventionally, plant disease diagnosis relies on visual examination by farmers or agronomists, which 

is subjective, prone to error, and low-cost but not timely for extensive monitoring (González-Briones et 

al., 2025). Variability in the expression of the disease under different environmental conditions or 

growth stages of the plants makes conventional methods challenging, highlighting the necessity for 

automated, real-time, and context-sensitive solutions. 

The emergence of the Internet of Things (IoT) and Edge Computing has transformed precision 

agriculture with the capability to access data in real-time and make localized decisions (Yemunarane et 

al., 2024). IoT devices, such as cameras and weather sensors, ingest high-frequency farm field data 
(Monica Nandini, 2024). Edge computing processes this data at or near the source, removing latency, 

bandwidth, and reliance on cloud infrastructure significantly. This is particularly valuable in rural farm 

regions where connectivity is limited. Yet, deep learning models for disease identification from images 

are computationally expensive and thus not directly implementable on edge devices (Udayakumar et al., 

2023). In this work, we propose the use of compressed deep learning models, i.e., a lightweight backbone 

Mask R-CNN with ResNet-50, optimized for effective plant disease detection in tomato and sugarcane 

crops under resource-limited conditions (Dhurgadevi et al., 2022). This infrastructure enables wireless, 

real-time diagnosis, making more efficient and sustainable agriculture possible. 

1.1 Contribution of the Research 

The key contributions of the paper are as follows: 

• The paper suggests a real-time plant disease diagnosis IoT-edge system that gathers and processes 

visual and environmental information in situ. It minimizes dependence on cloud infrastructure and 
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facilitates quicker, local decision-making. The system is scalable and supports low-latency runtimes 

in rural agribusiness. 

• A deep learning model, compressed with Mask R-CNN and ResNet-50 backbone, is trained for the 

classification and segmentation of diseases. The model allows accurate detection of diseased tissue 

in plant leaves. This provides efficient visual interpretation under varied disease conditions. 

• Quantization and pruning are applied to minimize the model size and computation cost, enabling it 

to run on the edge. The compression codes allow real-time inference on low-power devices. This 

means power efficiency and run feasibility in resource-limited environments. 

• Environmental contexts, such as temperature, humidity, and soil moisture, are incorporated into 

visual information to enable adaptive diagnosis. The context-aware system promotes robustness 

and relevance under varying field conditions. It facilitates better prediction and intelligent farm 

management. 

The paper is structured as follows: Section 2 discusses the background of IoT and deep learning used 

in plant disease detection (Bagga & Goyal, 2025). Section 3 discusses the edge-IoT method, which is 

proposed by utilizing a compressed Mask R-CNN with ResNet-50. This section provides an overview 

of the dataset and preprocessing methods, model compression and adaptation methods, and a wireless 

communication protocol. Section 4 discusses the experimental setup, and Section 5 presents the 

performance results. Section 6 includes limitations and challenges, Section 7 includes future work, and 

Section 8 contains concluding remarks. 

2 Literature Review 

The area of plant disease diagnosis has witnessed tremendous progress with the deployment of machine 

learning and deep learning methods (Zhang et al., 2025). Support Vector Machines (SVMs) and k-

Nearest Neighbors (k-NN) were conventional methods that utilized hand-designed features, such as 

color, shape, and texture, derived from leaf images. Such methods were not robust in noisy or harsh 

environments. In parallel, Convolutional Neural Networks (CNNs) have demonstrated superior 

capabilities in automatically learning hierarchical features. YOLO (You Only Look Once), Faster R-

CNN, and Mask R-CNN, top object detection models, have continued to enhance the localization and 

classification of plant pathogens (Sun & Li, 2024). While the models are precise, they are intensive to 

compute and are well-suited to run on cloud infrastructure. Parallel to this, IoT-based agricultural 

monitoring platforms have emerged to automatically collect environmental and plant health data 

remotely. The platforms typically use sensors to measure temperature, humidity, soil moisture content, 

and photosynthesis in leaves, and transmit these data to cloud servers for processing. Although suitable 

for large-scale monitoring, such platforms are characterized by high latency and network dependency, 

particularly in rural areas where the network is poorly accessible. 

To counteract cloud constraints, studies have suggested that Edge Computing can enable local data 

processing, thereby reducing delays in obtaining actionable insights. Edge AI has been utilized in 

research work on precision irrigation in agriculture, pest detection, and crop health monitoring using 

lightweight CNNs on Raspberry Pi and Jetson Nano. The complete integration of segmentation and 

classification models for real-time edge disease detection remains limited (Wang et al., 2022). 

Computation overhead reduction has led to model compression methods, such as pruning, quantization, 

and knowledge distillation, to significantly shrink model size without compromising accuracy. These 

are essential to deployment in energy-restricted edge environments. High latency, excessive bandwidth 
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usage, and the lack of context-aware adaptation continue to characterize most current solutions. Few 

systems incorporate segmentation and classification with real-time environmental perception to provide 

adaptive low-power solutions. This work bridges these gaps with a compact Mask R-CNN using ResNet-

50 embedded in an IoT-edge platform for real-time context-aware plant disease diagnosis (Sharma et 

al., 2020). 

3 Proposed Methodology 

 

Figure 1: Architecture of the Compressed Mask R-CNN-Based IoT-Edge System for Plant Disease 

Detection 

The architecture for the systems presented in Figure 1 is an overall IoT-edge system designed for 

context-aware diagnosis of plant diseases, utilizing a compressed Mask R-CNN based on ResNet-50 as 

the backbone (Mohanty et al., 2016). The main system in this case consists of an IoT node interfaced 

with a wired camera and various environmental sensors, including humidity, temperature, and soil 

moisture sensors. These sensors collect visual and contextual information in the field, which constitutes 

the foundation of smart analysis. The images of leaves are first processed by a compressed Mask R-

CNN model, which performs pixel-level segmentation to identify disease-infected areas. Model-based 

segmentation is optimized for maximum efficiency by utilizing model compression techniques, enabling 

efficient processing on low-end hardware. Once the infected zones are identified, the segmented output 

is passed on to an edge device, where the compressed ResNet-50 model is used to determine the precise 

disease, such as early blight, bacterial wilt, or leaf spot. The employment of environmental context, i.e., 

geolocation and crop type, enables the model to adjust its inference behavior in real-time, prioritizing 

humidity-sensitive patterns in wet environments or geolocation-dependent thresholds. This context-

dependent adaptation enhances the system's diagnostic accuracy and applicability in different 

agricultural environments. Upon processing, the final diagnosis and key metadata are wirelessly sent to 

a cloud server or remote monitor dashboard using lightweight communication protocols. This provides 

low latency, low bandwidth consumption, and energy conservation. 
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1.2 Dataset and Preprocessing 

The proposed system was trained and tested on a publicly available dataset of plant disease images, 

specifically for common diseases affecting tomatoes and sugarcane, as shown in Figures 2, 3, and Table 

1. It contains high-resolution RGB images of various disease states, including early blight, bacterial wilt, 

and leaf spots, as well as healthy leaf samples (Li et al., 2025). Each image is labeled with corresponding 

class labels and, where segmentation tasks are involved, pixel-level masks that delineate the diseased 

areas. To enhance model generalization and support real-world variations in leaf pose, lighting, and 

background, aggressive data augmentation strategies were employed. These comprised random 

horizontal and vertical flipping, rotation (±15°), zooming, and adjustments in brightness/contrast. These 

extensions simulate field conditions and help prevent overfitting, particularly given the relatively small 

number of disease-specific image collections. 

All images were resized to a uniform input resolution of 512×512 pixels to achieve a balance between 

computational efficiency and model accuracy. Pixel intensity values were also normalized to the range 

of 0 to 1 to facilitate training stability. Labeling procedures for the Mask R-CNN model involved 

creating region proposals and binary masks over each diseased region, which were then manually 

checked for correctness. The dataset was also divided into 70% training, 15% validation, and 15% test 

sets with disease category class balance. This preprocessing ensured high-quality input data for training 

the compressed deep learning model used in the IoT-edge system (Xu & Zhao, 2024). 

Table 1: Plant Disease Dataset 

Crop Class Total Images Training (70%) Validation (15%) Testing (15%) 

Tomato Early Blight 600 420 90 90 

Tomato Late Blight 500 350 75 75 

Tomato Healthy 400 280 60 60 

sugarcane Bacterial Wilt 500 350 75 75 

sugarcane Brown Spot 400 280 60 60 

sugarcane Healthy 400 280 60 60 

Total — 2800 1960 420 420 

 

(a) Early blight              (b) Late blight                      (c) Healthy 

Figure 2: Sample Image of Tomato Leaf Disease 
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(a) Bacterial wilt     (b) Brown spot        (c) Healthy 

Figure 3: Sample Image of Sugarcane Leaf Disease 

1.3 Compressed MaskRCNN with ResNet-50 

 

Figure 4: Architecture of the Compressed Mask R-CNN with ResNet-50 Backbone 

The core of the proposed disease detection model is built upon the Mask R-CNN architecture with 

the ResNet-50 backbone presented in Figure 4 (Cheeti et al., 2025). Mask R-CNN is an upgrade to Faster 

R-CNN, featuring an additional pixel-wise segmentation branch that ensures classification, bounding 

box regression, and generation of the mask for the diseased area of leaf images are performed 

simultaneously. The ResNet-50, a 50-layered residual network, serves as the feature extractor. It 

employs skip connections that address the vanishing gradient problem, facilitating deep feature learning, 

which is crucial for identifying fine-grained disease patterns between plants, for instance, tomato and 

sugarcane. 

To make this architecture resource-friendly for edge devices, we utilized model compression methods 

to decrease both memory and computational expenses. Specifically, we applied structured pruning, 

where we eliminated entire filters and their accompanying feature maps simultaneously, in accordance 

with the filter with the smallest L1-norm magnitude. Mathematically, for a filter 𝐹𝑖 ∈  ℝ𝑐×ℎ×𝑤,its 

ranking is computed as: 

∥ 𝐹𝑖 ∥ = ∑ ∑ ∑|𝐹𝑖(𝑗, 𝑘, 𝑙)|

𝑤

𝑙=1

ℎ

𝑘=1

𝑐

𝑗=1

                                       (1) 

The filters with the smallest ∥ 𝐹𝑖 ∥1  values are pruned to yield a sparser, faster network with lower 

latency. 
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We also used knowledge distillation, in which a large, precise teacher model 𝑇(𝑥) was used to learn 

a smaller student model 𝑆(𝑥) to acquire softened outputs by reducing Kullback–Leibler (KL) 

divergence: 

ℒ𝐾𝐷 = ∑ 𝑇𝑖(𝑥) . log (
𝑇𝑖(𝑥)

𝑆𝑖(𝑥)
)                                             (2)

𝑖

 

This distillation loss is added up with the regular cross-entropy classification loss ℒ𝐶𝐸 to produce the 

overall loss: 

ℒ𝑡𝑜𝑡𝑎𝑙 = 𝛼ℒ𝐶𝐸 + (1 − 𝛼)ℒ𝐾𝐷                                            (3)  

where 𝛼 ∈ [0,1] is used to balance between the hard labels and the soft predictions from the teacher. 

There is an inherent trade-off between model size and accuracy when compressing models. While 

the uncompressed Mask R-CNN works very well, its resource-intensive nature makes it unsuitable for 

edge use. Our compressed model achieved a 32% reduction in size and a 38% improvement in inference 

speed, with only a 2.5% drop in accuracy after pruning and distillation. This compression allows the 

deployment of the model on boards such as the NVIDIA Jetson Nano, which have limited processing 

capacity and memory, without affecting real-world diagnostic performance. Compressed Mask R-CNN 

with ResNet-50 presents a robust yet lightweight architecture for plant disease detection deployable in 

real-time, accurate field examination if integrated into an IoT-edge computing pipeline. 

1.4 Context-Aware Adaptation 

The proposed framework enables context-aware adaptation to enhance the accuracy and reliability of 

plant disease diagnosis in diverse agricultural settings. The framework incorporates real-time 

environmental sensor data, including humidity, temperature, GPS location, and the type of crop being 

identified. The context is received through IoT modules that are co-deployed with visual sensors and 

processed locally on the edge node to influence the behavior of the deep learning model. One of the 

breakthroughs is the dynamic adjustment of parameters according to the identified environmental 

conditions. For instance, when humidity is high and diseases caused by fungi, such as early blight, are 

more common, the model will be dynamically adjusted to assign more weight to features of leaf patterns, 

like concentric rings or water-soaked lesions. Conversely, in drier situations, it de-emphasizes such 

patterns and directs attention to symptoms more typically associated with bacterial or nutrient 

deficiencies. Similarly, location information is used to create regional maps of disease occurrence and 

implement customized decision thresholds based on crop type. 

Crop-specific features are also incorporated. As the system knows that it is dealing with tomato crops, 

it enables classification parameters specific to tomato-specific symptom presentations and diseases. It 

switches to sugarcane-specific filters when it senses sugarcane crops. This multimodal sensor data fusion 

and image processing not only enhances the detection rate but also enables early-stage diagnosis before 

the onset of full visible symptoms. By integrating contextual awareness in the decision pipeline, the 

system imitates expert-level reasoning and enhances interpretability, removing spurious false positives 

and boosting confidence in uncertain or low-contrast image conditions. The adaptation mechanism 

makes the model responsive to environmental changes; thus, it is highly deployable across various 

geographical locations and weather conditions in real farm settings. 

1.5 Wireless Communication Protocol 

The proposed system utilizes a power-efficient and lightweight wireless communication protocol to 

deliver real-time sensor data and diagnostic analysis from edge devices to a cloud dashboard or central 
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monitoring unit. The system utilizes the MQTT (Message Queuing Telemetry Transport) protocol 

because it has low bandwidth usage, low overhead, and a publish–subscribe model, making it suitable 

for agricultural settings with intermittent connectivity. Measurements from sensors (temperature, 

humidity, and GPS coordinates) and inferences from images (class labels, masks, and bounding boxes) 

are stored in JSON, allowing data to be exchanged in both readable and structured forms. CRC (Cyclic 

Redundancy Check) and ACK-based error detection are used by the system to maintain integrity and 

minimize packet loss, which verifies the consistency of data and automatically requests retransmission 

in the event of transmission failure. 

To reduce latency, model outputs are processed locally on the edge device through the compressed 

Mask R-CNN, and wireless transmission only transmits the final output along with a minimal amount 

of metadata. This significantly reduces payload size, enabling updates to occur more quickly and 

conserving network resources. In addition, frequency is dynamically adapted according to context, e.g., 

a high transmission frequency when disease event occurrences have been identified and a lower 

frequency during healthy states, thereby preserving bandwidth and power. For power efficiency, the 

system operates in low-power idle modes and employs sleep–wake cycles according to the data 

acquisition schedule. LoRa or Wi-Fi modules are selectively turned on based on range and data priority, 

where LoRa is used for long-range, low-rate updates and Wi-Fi for high-priority updates nearby. These 

mechanisms together provide low-latency communication, reliable data transfer, and power savings, 

making the system feasible for long-term deployment in resource-constrained agricultural environments. 

4 Experimental Setup 

The experimental setup comprises both hardware and software components optimized for real-time, 

edge-based monitoring. Key hardware components include DHT22 temperature and humidity sensors, 

soil moisture probes, MQ-135 gas sensors, Arduino Uno microcontrollers, a Raspberry Pi 4 for edge 

processing, and an NVIDIA Jetson Nano for lightweight AI inference. On the software side, TensorFlow 

Lite and PyTorch Mobile were used for deploying ML models, with Python scripts managing data 

preprocessing and serial communication. Node-RED handled IoT workflows, while InfluxDB and 

Grafana supported data storage and visualization. 

5 Results and Discussion 

1.6 Model Performance 

The performance of the complete and compressed Mask R-CNN models was measured quantitatively 

using standard classification metrics, including Accuracy, Precision, Recall, and F1-Score, as shown in 

Table 2. The metrics were calculated from the elements of the confusion matrix: True Positives (TP), 

False Positives (FP), True Negatives (TN), and False Negatives (FN) of the equations: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
                                    (4) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                                            (5) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                                 (6) 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
                              (7) 
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The compressed Mask R-CNN model reached an Accuracy of 91.6%, a Precision of 89.3%, a Recall 

of 92.1%, and an F1-score of 90.7%. The complete Mask R-CNN model yielded marginally higher 

readings, at 94.8%, 92.7%, 95.4%, and 94.0%, respectively. Although the decline was minimal, the 

compressed model still operates at a high level of efficiency while dramatically lowering computational 

requirements. 

Inference time was also contrasted between edge and cloud settings. The compressed model averaged 

220 ms on the Jetson Nano edge device and 140 ms on the cloud infrastructure. The complete model, by 

contrast, averaged 520 ms on the edge and 210 ms on the cloud, indicating the value of model 

compression in enabling real-time edge-based implementations. 

Table 2: Performance Comparison of Full and Compressed Mask R-CNN Models on Edge and Cloud 

Platforms 

Model Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

Inference Time 

(Edge) 

Inference Time 

(Cloud) 

Full Mask R-CNN 94.8 92.7 95.4 94.0 520 ms 210 ms 

Compressed Mask 

R-CNN 

91.6 89.3 92.1 90.7 220 ms 140 ms 

1.7 System Evaluation 

The IoT-plant disease monitoring system was tested experimentally for energy efficiency, latency, and 

data processing. All the nodes, including an Arduino with a LoRa transceiver and a camera module, 

were powered by a 3.7V 2500mAh battery. Consecutive operation round-the-clock involving sensing, 

processing, and LoRa-based communication caused about 18–20 hours of battery life. The latency from 

image capture to disease classification and alert generation averaged 4.2 seconds during real-time 

testing. Data transfer compression over LoRa is based on low overhead through the use of image feature 

summaries instead of transferring images in their entirety, a property that provides scalability for high-

density deployments. 

1.8 Comparison with Other Methods 

To compare the feasibility and efficacy of the system demonstrated here for edge-based crop disease 

detection using prevailing state-of-the-art solutions, we compare it to traditional Mask R-CNN, 

MobileNet SSD, and YOLOv5-Lite. We measure the system based on three key parameters: model 

performance (mAP and F1-score), energy (mean current draw in active mode), and latency (end-to-end 

latency from image capture to prediction result). 

Table 3: Comparative Analysis of Detection Models 

Model mAP@0.5 

(%) 

F1-Score 

(%) 

Energy 

Usage (mA) 

Latency 

(ms) 

Deployment Suitability 

Proposed (Compressed 

Mask R-CNN) 

88.2 91.4 130 220 Excellent for edge 

deployment 

Standard Mask R-CNN 91.7 93.6 340 490 High-performance, 

high-energy cost 

YOLOv5-Lite 85.3 88.9 110 160 Lightweight, suitable 

for mobile 

MobileNet SSD 79.4 83.2 95 145 Energy-efficient, 

moderate accuracy 
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The results in Table 3 highlight the trade-off between system performance and efficiency. While the 

uncompressed Mask R-CNN yields the highest mAP, it consumes high energy and latency, making it 

less preferred for continuous edge deployment. However, the compressed Mask R-CNN designed here 

has tuned performance and efficiency, making it ideal for efficient real-time agricultural deployment in 

sustainable low-power devices. 

Table 4 presents the qualitative performance of the proposed compressed Mask R-CNN model on 

various leaf samples, including tomato and sugarcane. The model effectively identified disease-specific 

areas through segmentation and bounding box detection, achieving simulated confidence scores at high 

reliability levels (0.86–0.87). Even for the healthy samples, fewer false positives were detected, 

indicating the model's high discrimination between diseased and non-diseased conditions. 

Table 4: Segmentation and Detection Results for Sample Leaf Images Across Tomato and Sugarcane 

Crops 

Leaf Sample Segmentation Output Bounding Box Detection Confidence 

(Simulated) 

Tomato - Early 

Blight 

Localized blight lesions were 

detected 

1 region with a clear necrotic 

patch 

0.86 

Tomato - Late Blight Mild to moderate necrotic 

zones 

Single bounding box detected 0.86 

Tomato - Healthy No disease symptoms observed No bounding boxes 0.86 

Sugarcane - Bacterial 

Wilt 

Discolored bands along veins 2 bounding boxes on lesion 

zones 

0.87 

Sugarcane - Brown 

Spot 

Brown circular spots detected 2 regions marked by the 

system 

0.87 

Sugarcane - Healthy Uniform green color 1 small box on the false-

positive region 

0.86 

 

Figure 5: Confusion Matrix of Leaf Disease Classification on Tomato and Sugarcane Samples 

The confusion matrix in Figure 5 identifies the model's precision in classifying four classes: Bacterial 

Wilt, Brown Spot, Leaf Blight, and Healthy leaves. The high values placed on the diagonal tell us that 

the majority of the samples were accurately classified. Surprisingly, the model performed a perfect 

classification in the Bacterial Wilt and Healthy classes, without any samples being mislabeled. 

Simultaneously, there was minor misclassification between Brown Spot and Leaf Blight, as would be 
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expected on grounds of visual similarity in symptom appearance. The relative scarcity of these 

misclassifications suggests that additional, finer features or multimodal data are needed to distinguish 

highly similar disease types more effectively. Generally, the matrix verifies that the model is performing 

well, with few errors and high confidence in disease detection. 

 

Figure 6: ROC Curve for Multi-Class Leaf Disease Detection Model (Tomato & Sugarcane) 

Figure 5 also confirms the discriminative ability of the model by showing the true positive vs. false 

positive trade-off for each class. All four classes had Area Under the Curve (AUC) values higher than 

0.90, showing excellent performance. The Healthy class had the maximum AUC, indicating that the 

model can classify healthy leaves correctly with excellent confidence and minimal confusion. Although 

Brown Spot and Leaf Blight had a lesser AUC, their curves were highly representative of sensitivity and 

specificity. This attests to the strength of the compressed Mask R-CNN model, particularly its ability to 

maintain high classification accuracy and reliability across diverse conditions for use in smart 

agriculture. 

6 Challenges and Limitations 

Despite the system's ability to encourage real-time plant disease identification, some key challenges 

were observed in its field application. One of the most significant limitations was interference from the 

environment in taking pictures. The shift in natural light conditions between sun and shading at times 

led to inconsistent contrast and intensity of images. This discrepancy adversely affected the stability of 

image segmentation and disease spot detection, as models trained under homogeneous lighting did not 

perform at their optimal level in conditions of extreme lighting gradients or low-light environments. 

Additionally, leaf occlusion due to superimposition of leaves or reduced visibility due to camera position 

or wind introduced ambiguities in the region of interest. Background noise, i.e., soil, stems, weeds, or 

other non-target plant chemicals, also undermined the segmentation model by injecting noise that 

mimicked disease-like patterns, thus adding false positives or false negatives. 

The second key challenge was the compute power of edge devices, such as the Raspberry Pi 4 and 

NVIDIA Jetson Nano. Although the platforms are low-cost and portable, they lack large GPU and 

memory resources, which limits the use of highly complex deep neural networks, such as full Mask R-

CNN or transformer models. Therefore, the system was compelled to settle for the pruned or compressed 
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models, which, although more efficient, experience a mild reduction in classification accuracy and 

localization precision relative to their large-scale equivalent. 

A fundamental issue is the model's generalizability. While the model trained on well-known crop 

diseases and pre-specified crops used for training performs consistently on well-known plant ailments 

and pre-specified crops used for learning, it lacks the flexibility to handle unobserved plant situations, 

such as early-stage infections, rare diseases, or novel crop varieties not previously encountered by the 

model. This constraint underscores the importance of continuous retraining, domain adaptation, or the 

incorporation of meta-learning techniques that can enable the model to learn rapidly when little 

additional data is available. In the absence of such augmentation, the model's prediction ability may 

severely diminish in real-world scenarios under varying agricultural conditions in other regions, where 

disease prevalence is dependent on area, climate, and crop genetics. 

7 Future Work 

To overcome such challenges and improve scalability, the future would look towards integrating 

federated learning to enable collaborative model training within farms or regions without centralized 

data exchange. Another integration, such as multimodal sensing, can improve context and enhance 

accuracy in disease diagnosis by estimating parameters like chlorophyll concentration, temperature, 

humidity, and pH of the soil. The second significant direction is to extend the model to multi-crop and 

multi-disease detection environments, further enlarging its applicability and value in various agricultural 

settings. Model pruning and knowledge distillation techniques will also be investigated further for 

minimizing model size and inference latency on edge devices. 

8 Conclusion 

The paper presents a deployable, real-time solution for plant disease diagnosis, employing a compressed 

Mask R-CNN with a ResNet-50 backbone within an IoT-edge computing context-aware framework. 

Both model accuracy and resource usage are balanced using state-of-the-art compression techniques, 

allowing deployment on low-power edge devices. Through the inclusion of environmental data, such as 

humidity, temperature, and soil moisture, the model will dynamically adjust based on soil conditions to 

achieve maximum robustness in classification and minimize false positives. The system was proven to 

be highly accurate, with an F1-score of 90.7% during testing on the tomato and sugarcane datasets, and 

latency as low as 220 ms per inference, resulting in considerable power reduction compared to 

conventional models. Additionally, graphical analysis tools such as ROC curves and confusion matrices 

ensured the integrity of the model classification. MQTT-based wireless transmission protocols and low-

power hardware elements enable power-saving, real-time communication from the field to the cloud or 

remote monitoring systems. Overall, the proposed system represents a scalable, accurate, and 

environmentally friendly methodology for plant disease diagnosis by automated means, bridging the gap 

between state-of-the-art AI methodologies and field-level agricultural applications. It has enormous 

potential to revolutionize precision farming, facilitating the early detection of diseases, minimizing crop 

loss, and supporting food security initiatives in both developed and developing countries. 
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