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Abstract 

Smart ubiquitous agriculture is a domain of industry that encompasses farming requiring profound 

monitoring, advanced technology, wireless data communication, and exceptional data analysis. The 

increasing interaction level with devices and automatic machines within agriculture creates new data 

challenges and requirements for decision support systems. My aim, within this paper, is to target the 

agricultural decision process using the Internet of Things (IoT), machine learning, and advanced 

predictive techniques. For this, I identify and examine the data acquisition methods, analytical tools, 

and decision-making devices that enable farmers and livestock managers to make the right choices 

and informed decisions on what actions to take. Using the selected intelligent systems, technologies, 

and automation techniques, I intend to demonstrate how these technologies can optimize the 

quantities and quality of output from agricultural undertakings while minimizing resource 

utilization. In addition, I highlight the unsolved problems of data redundancy, data protection, and 

manipulation, and dimensions of the issues associated with integrating information technology into 

smart farming, which need to be specified for decision-making within the farming environment. The 

studies and conclusions outlined in this paper prove that value-added information frameworks pave 
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the road to agricultural planning and monitoring 2.0, which will enable food system production that 

is more responsive, exact, and environmentally sound. 

Keywords: Smart Agriculture, Data-Driven Decision Support, Ubiquitous Computing, Internet of 

Things (IoT), Precision Farming. 

1 Introduction 

The development of digital technologies has turned traditional farming practices into what is termed 

smart ubiquitous agriculture (Vij et al., 2025). The modern paradigm integrates the potential of 

ubiquitous computing with IoT, cloud capabilities, AI, and even wireless communication networks, 

enabling monitoring, automation, and real-time intelligent decision-making at every step in the 

agricultural value chain (AL-Nabi et al., 2024). Smart sensors, drones, connected devices, and data 

platforms help achieve unparalleled precision, efficiency, and sustainability of farming operations 
(Balaji et al., 2023). Enhanced technology marks a shift as more than just an evolution in tools; it instead 

redefines the systems of agriculture in their operation, environmental interaction, and dynamic 

responsiveness to shifting conditions (Aqlan et al., 2023). 

In this context, data-driven decision support systems (DDSS) are especially noteworthy for the 

sophisticated, innovative, intelligent agricultural system's agile management (Boopathy et al., 2024). 

These systems are designed to gather, store, process, and classify data from, but not limited to, climate 

sensors, satellite imaging, soil monitors, and tracking devices for livestock. With sophisticated analytics 

and machine learning algorithms, DSS, predictive insights, and recommendations for resource 

optimization can be offered to stakeholders and farmers, which aids in controlling risks and enhancing 

productivity (Patel & Rao, 2023). For example, predictive models can optimize seasonal planting or 

harvesting schedules, offer warning signs for pest problems, estimate weather forecasts, and anticipate 

yield based on historical data. 

Despite the rapid technological advancements, its implementation still faces numerous technical, 

practical, and multidisciplinary challenges. The merging and incorporation of different data sets 

operating under varying guidelines presents a considerable barrier. In addition, limited access to rural 

regions, implementation costs, data privacy, the complexity of analytic applications, and many other 

factors restrict adoption, especially in resource-scarce smallholder farming regions (Klavin, 2024). In 

addition to the lacking infrastructure, domain knowledge, and design aesthetics, which allow for 

effortless interaction with the system, real-time analysis and interpretation of extensive data for context-

appropriate insights present a deepening quandary. 

In this paper, we will critically analyze, from various angles, the current state of modern technology 

used in smart ubiquitous agriculture, paying special attention to data-driven elements and their ever-

evolving nature, foundations, real-world applications, and prospects. This includes analyzing the 

collection and processing of data and all the relevant case studies to understand how the systems are 

transforming the agricultural world as we know it. Also provided are some considerations alongside 

other practical recommendations pertinent to the limitations explored in the study aimed at improving 

the accessibility, reliability, and overall smartness of agriculture in different socio-economic contexts 

and regions. 

Key Contribution 

• Explain the fundamental principles underpinning smart ubiquitous agriculture and elaborate on 

the rising importance of intelligent systems. 
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• Examine modern methods and technologies for collecting, analyzing information, and 

developing support decisions in the agriculture sector. 

• Describe the practical and tangible impacts provided by data-oriented management strategies in 

crop cultivation and livestock breeding through studying relevant examples. 

• Outline significant issues associated with systematic data assimilation, system adoption, and 

scale expansion, then suggest further study and development areas.  

This paper aims to formulate a decision support system for smart agriculture with the incorporation 

of IoT, machine learning, and spatial-temporal analytics. The Introduction explains the growing demand 

for automation in Intelligent Farming Systems. The Literature Survey analyzes current approaches and 

discusses recent developments and shortcomings. The Proposed Model offers a novel approach based 

on GNN and LSTM networks to increase crop yield, irrigation, and pest control forecasting accuracy. 

Model validation was done in the Results and Discussion section, which confirms the model's 

effectiveness against existing methods. The Conclusion details the main contributions and revisions, 

with the other section in References. 

2 Literature Survey 

Incorporating ubiquitous sensing, ML, and AI technologies has breached new frontiers in smart 

agriculture. Furthermore, many preceding studies from 2021 onwards have highlighted the role of 

advanced intelligent technologies in optimizing agricultural processes alongside supporting systematic 

decision-making (Al-Masri et al., 2023). For instance, researchers like Kumar et al. (2021) utilized a 

Random Forest algorithm to predict soil moisture levels to improve irrigation scheduling, enhancing 

water usage efficiency in precision farming (Orhorhoro et al., 2016). Likewise, some studies (Das & 

Nayak, 2021) resorted to applying decision tree models for classifying disease-affected crops and were 

able to accurately classify them using images obtained from smart sensors and drones (Chia-Hui et al., 

2025). 

The employment of deep learning approaches, especially CNNs, is on the rise concerning real-time 

crop health assessment and weed detection (Li et al., 2022). More Li et al. (2022) showed that classifying 

crops as weeds or non-weed crops could be automatically performed on the ground using CNN models 

deployed on edge IoT devices, eliminating the need for manual intervention and auxiliary chemicals. 

Other researchers have employed RNNs and LSTM to temporally analyze weather and soil data for 

estimating crop yield and climate impacts (Vij & Prashant, 2024). These time-series models are essential 

for enhanced strategic foresight in farm management (Patel & Singh, 2023). 

Another emerging trend is fuzzy logic and hybrid algorithms for managing decisions within uncertain 

environments. In smart greenhouses, Patel and Singh (2023) developed a fuzzy inference system 

enhanced with genetic algorithm features, which optimized nutrient allocation while considering varying 

environmental factors and resource limitations (Bandyopadhyay & Roy, 2023). Furthermore, support 

vector machines (SVMs) have gained prominence in the livestock health monitoring industry and are 

used to detect movement and behavioral anomalies using IoT-enabled wearable sensors (Al-Masri et al., 

2023). These models assist in timely illness detection and better animal welfare outcomes (Flammini & 

Trasnea, 2025). 

From the perspective of the entire system, how different data sources can be integrated and how 

various systems can be combined into one more unified system for more complete coverage of the given 

problem domain has also been studied (Zhang et al., 2024). Al-Masri et al., (2023) proposed an ontology-



Data-Driven Decision Support in Smart Ubiquitous Agriculture                                                            Zaed Balasm et al. 
 

650 

based middleware for smart agriculture that facilitates interaction between sensors and cloud services 

using IoT devices (Huang & Chen, 2025). Moreover, blockchain technology has been studied to improve 

the security and traceability of agricultural data pipelines, as described in Zhang et al., (2024), which 

applies blockchain technology with federated learning in a novel approach for decentralized secure 

multi-party decision making (Nakamura & Lindholm, 2025). 

Moreover, reinforcement learning (RL) is employed in automatic irrigation and fertilization systems. 

One such article implemented Deep Q-Learning for the dynamic control of irrigation valves, utilizing 

weather forecasts and soil moisture metrics, achieving a substantial reduction in water wastage (Rahman 

& Lee, 2022). Lastly, an extensive review (Huang & Chen, 2025) focused on the application of machine 

learning in agriculture and discussed the use of AI without reasoning for explainable decision-making 

frameworks (Papadopoulos & Christodoulou, 2024). 

The advanced research demonstrates how diverse algorithms and approaches integrate with smart 

agriculture. It also shows how such research shifts from static, rule-driven architectures towards adaptive 

systems that learn to navigate complex, uncertain field environments. 

3 Proposed Model 

The new system, specifically designed for smart ubiquitous agriculture, combines IoT-based data 

collection with GNNs and LSTM models to create a unique data-driven decision support system. This 

approach aims to model the intricate spatial relationships of polygons of farm elements like soil quality, 

microclimates, and crops, which are often inaccurately captured or neglected by traditional models. An 

entire farm's worth of data is stored in a single unit, including images of crop health, monitoring data of 

livestock, and sensor readings of environmental parameters such as soil moisture, temperature, and 

humidity. For modeling purposes, the collected data streams are cleaned, missing values are filled, and 

inputs are standardized through these steps, constituting the preprocessing phase. 

The data is represented as a graph after completion of data preprocessing, where nodes denote sensor 

individual locations or subunits of the farm and edges indicate either a spatial or functional relationship, 

such as adjacency or irrigation networks. The GNN model then uses this graph to learn profound spatial 

representations, enabling localized prediction of disease spread, nutrient deficiency, or microclimate 

changes with higher precision than traditional techniques. The temporal aspects are modeled using 

LSTM networks, which improves forecasting for the crop growth stages, weather impact, and irrigation 

requirements by processing time-series datasets. This creates a hybrid spatial-temporal model that 

provides context-aware support. Through an intuitive interface, context-sensitive irrigation, fertilization, 

and pest management recommendations are provided and visually displayed to the farmer as actionable 

maps. The model improves over time along with user input and constant sensor feedback. 

𝐻(𝑙+1) =  𝜎(𝐷−
1

2 𝐴𝐷−
1

2𝐻(𝑙)𝑊(𝑙)     (1) 

In Equation (1), 

• 𝐻(𝑙+1)𝑈𝑝𝑑𝑎𝑡𝑒𝑑 𝑛𝑜𝑑𝑒 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑎𝑡 𝑙𝑎𝑦𝑒𝑟 𝑙 + 1. 

• σ Nonlinear activation function (e.g., ReLU). 

• A=A+I Adjacency matrix with self-loops. 

• D Degree matrix for normalization. 

• 𝑊(𝑙)Learnable weights for feature transformation. 
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In Equation 1, feature aggregation is accomplished for a graph by applying the normalized adjacency 

and degree matrices, which update every node's representation using its information and the information 

from neighboring nodes. A linear weight matrix transforms each of these aggregated features, and a 

nonlinear activation function σ is applied thereafter. This way, the model can learn sophisticated spatial 

configurations concerning the agricultural environment. This facilitates enhanced and more intelligent 

decision-making within smart, ubiquitous agriculture. 
 

 

Figure 1: Data-Driven Cycle in Precision Agriculture 

Figure 1 shows the uninterrupted and analytics-focused operational cycle within precision 

agriculture, focusing on the role of sensing technologies and analytics in enabling decisions during the 

cycle. The first stage within the cycle is Data Sensing, where sensors and IoT devices track relevant 

environmental and crop-related parameters. The subsequent steps are Data Collection and Data 

Analytics, which involve structuring and processing the raw data to gain valuable insights. Input 

Planning uses the insights to formulate when and how much agricultural inputs should be applied. The 

Resource Application stage takes these plans into the field. Thereafter, intervention effectiveness is 

evaluated, and crop mapping occurs during Post-application, where feedback is returned to the cycle to 

improve it. Underlying all of this is Precision Agriculture, which harnesses the cyclic flow to enhance 

the yield and minimize the waste while supporting sustainable farming practices through adaptive and 

real-time decision making. 

Figure 2 contains the diagram of an intelligent decision-making system aimed at precision 

agriculture. Sensor networks are set over an entire agricultural area to track and record environmental 

and crop-related parameters continuously. Each of the sensor nodes captures real-time information like 

soil moisture, temperature, and humidity, which is then wirelessly sent to a Centralized Data Analysis 

and Management Unit (C-DAMU). The system develops a graph-based model of the agricultural fields 

wherein each node corresponds to a sensor or crop point, while edges correspond to spatial or 

environmental interactions. This structured information is processed through a proposed decision-

making function that assesses conditions and recommends action to reduce environmental risks or to 

resource use optimization. Decisions are made available on the internet so that remote users and mobile 

devices can access them; this will enhance the possibility of timely actions being taken. The architecture 

combines cloud storage and remote access with feedback information, enabling the creation of a strong 

smart data infrastructure for agriculture. 
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Figure 2: Smart Agriculture Decision-Making Architecture Using Sensor Networks 

The approach describes a complete workflow that begins with data sensing using IoT devices to 

structured data collection, preprocessing, and graph-structured data representation. A Graph Neural 

Network (GNN) model is used to infers spatial and temporal dependencies between Agri-entities within 

the integrated data pipeline. The system architecture incorporates the analytical core with a cloud-based 

decision-making unit which enables seamless communication and processing between the sensor fields, 

data servers, and end-users. The system enables real-time data-driven decisions throughout the entire 

pipeline—from data capture to insight generation—which supports precision agriculture for optimized 

irrigation, pest management, and yield prediction. The design is modular and scalable, making it 

adaptable for different crops, field sizes, and environmental conditions which improves smart ubiquitous 

agriculture systems. 

4 Result and Discussion 

This study analyzes the effectiveness of the pilot smart farm’s data-driven decision support system with 

an IoT sensor suite for soil moisture, temperature, humidity, and crop health monitoring over six months. 

The dataset contains time-series data from 20 sensor nodes at different crop fields, along with manual 

records for crop yield, pest infestation, and associated timestamps. For evaluating the performance of 

the integrated Graph Neural Network (GNN) with Long Short-Term Memory (LSTM) network, we 

compared its forecasting skill against well-known machine learning techniques including Random 
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Forest (RF) and Support Vector Machine (SVM). Important performance metrics included estimation 

accuracy and precision for irrigation, pest control, and yield forecasting, as well as recall and F1-score. 

Table 1: Performance Comparison of Machine Learning Models on Smart Agriculture Tasks 

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

Random Forest (RF) 82.5 80.1 78.9 79.5 

Support Vector Machine (SVM) 84.3 82.7 81.5 82.1 

Proposed GNN + LSTM 91.7 90.4 89.6 90.0 
 

The information provided within Table 1 illustrates that the hybrid GNN-LSTM model outperforms 

other conventional machine learning and deep learning techniques. Its precision, recall, and F1 score, 

among other key metrics, were consistently the highest, indicating the model is dependable and robust. 

The employment of Graph Neural Networks (GNNs) in conjunction with Long Short-Term Memory 

(LSTM) units enables the model to take into consideration not only the temporal pattern over time but 

also the spatial interdependencies of the agricultural zones which enhances the representation of the 

highly dynamic systems of agriculture and predicts with higher context accuracy.Such improvements 

affect the policies formulated in precision agriculture at the farm level. Enhanced and timely predictions 

allow agronomists and farmers to restructure irrigation schedules to curb water wastage and safeguard 

soil ecology. Timely and robust identification of pest risks greatly aids in crop damage mitigation and 

reduction in pesticide usage. Furthermore, the yield forecasts and logistics triad allows for smarter 

decision-making and aids in planning which curtails wastage while promoting sustainable agricultural 

practices and aids in efficient resource utilization. 

 

Figure 3: Comparison of Prediction Accuracy Among Machine Learning Models 

In Figure 3, a comparison of the prediction accuracy (%) for smart agriculture using Random Forest 

(RF), Support Vector Machine (SVM), and the new hybrid model of Graph Neural Network and Long 

Short Term Memory (GNN + LSTM) is provided. From the bar chart, it is evident that the GNN + LSTM 

model surpasses the other models with an impressive accuracy of 91.7%. RF and SVM models achieved 

lower scores of 82.5% and 84.3%. This marked improvement is due to the hybrid model’s use of deep 

learning algorithms that enhance its spatial and temporal dependency calculations within intricate 

agricultural datasets, thus allowing for more dependable and accurate decision-making. Enhancements 

such as these aid in optimizing issue such as irrigation scheduling, pest control, yield predictions, and 

other agricultural activities, leading to greater sustainability in farming practices. 
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5 Conclusion 

To conclude, this paper illustrates the importance of the integration of IoT sensing, machine learning, 

spatial-temporal analytics, and smart ubiquitous agriculture technology through the use of data driven 

decision support systems. The hybrid Graph Neural Network with LSTM model proposed in this paper 

is found to predict crucial agricultural determinants like irrigation requirements, pest infestations, and 

crop yields with high accuracy, outperforming other models due to its advanced calculation of the 

intricate relationships stemming from environmental factors and time related patterns. The outcomes of 

this study emphasize the capabilities of such intelligent systems in optimizing resources and minimizing 

waste while enhancing productivity in precision farming. There are still some advancements needed in 

the areas of integrating heterogeneous data sets, rural areas connectivity, system scalability, and data 

security as these continue to pose the most challenging hurdles to broad acceptance. Further efforts in 

the development of these systems should be concentrated on enhancing ease of use and lower costs, 

particularly for smallholder farmers, increasing trust in AI powered advisory systems, and improving 

the system explainability. Altogether, this study demonstrates the fact that data is one of the cornerstones 

of next generation agriculture which supports the notion of adaptive and sustainable food production 

while enhancing the resilience towards global challenges. 
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