
ISSN: 2093-5374 / E-ISSN: 2093-5382

528

Premature Avoidance in Genetic Algorithm using Dynamic

Mutation Probability

Rawan Nassri Abulail1*

1*Associate Professor, Computer Science Department, Philadelphia University, Amman, Jordan.

rabulail@philadelphia.edu.jo, https://orcid.org/0009-0002-8168-2455

Received: November 13, 2024; Revised: December 23, 2024; Accepted: February 14, 2025; Published: March 31, 2025

Abstract

Evolutionary algorithms are optimization techniques based on biological and natural evolution

mechanisms. These algorithms are a subset of evolutionary computation and fall under unsupervised

learning. The Genetic Algorithm (GA) is one of the most common types of evolutionary algorithms.

It begins with an initial set of candidate solutions and starts the evolutionary process by applying

certain operators to generate new solutions. The newly produced solutions are expected to

outperform the previous ones. Premature convergence is a problem encountered by most

evolutionary algorithms, particularly genetic algorithms. It occurs when parental solutions fail to

generate better offspring or children with superior traits. Self-adaptive mutations and Panmictic

populations are the main factors contributing to premature convergence. Several approaches can be

applied to avoid premature convergence and sustain population diversity, including the crowding

method, incest prevention algorithm, scheduled sharing approach, cooperation-based approach,

syntactic analysis of convergence, random offspring generation, selective mutation, and dynamic

reproduction operators. The lack of population diversity leads directly to convergence, forcing the

evolutionary algorithm to stop evolving and return the dominant value as the candidate solution. In

most cases, this is not an optimal solution. One approach to sustaining population diversity is

applying dynamic reproduction genetic operators. The main objective of this research is to propose

an enhancement to the standard genetic algorithm to overcome premature convergence. A dynamic

reproduction mutation operator is proposed to vary the probability of mutation based on the fitness

value in each iteration. The methodology employed by the researcher involves conducting

experiments to demonstrate the results achieved after applying the enhanced genetic algorithm

(Rowe, 2008). Three different experiments with varying population sizes and mutation probability

values were carried out to identify the best solution for an optimization problem. A total of 100

generations were produced by applying 10,000 iterations, and a binary genetic algorithm was used

for running iterations with 16-bit chromosome lengths to represent candidate solutions. The results

show that improvements in fitness scores were achieved, which enhanced the performance of the

genetic algorithm for the produced generations (offspring). Moreover, population diversity was

maintained.

Keywords: Evolutionary Algorithms, Genetic Algorithms, Premature Convergence, Dynamic

Mutation Probability.

1 Introduction

Evolutionary algorithms are optimization algorithms based on biological and natural evolution

mechanisms (Muralidharan, 2024). These algorithms are a subset of evolutionary computation and are

Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications (JoWUA),

volume: 16, number: 1 (March), pp. 528-542. DOI: 10.58346/JOWUA.2025.I1.031

*Corresponding author: Assistant Professor, Business Information Technology Department, Liwa College,

Abu Dhabi, UAE.

Premature Avoidance in Genetic Algorithm using Dynamic

Mutation Probability

 Rawan Nassri Abulail

529

categorized under unsupervised learning (Vikhar, 2016). The main characteristic of evolutionary

algorithms is that they start with many candidate solutions (population) instead of one solution and go

through many natural operations in order to produce better candidate solutions (offspring) for the

optimization problem (LaTorre & Molina, 2020; Sadulla, 2024). The Genetic Algorithm (GA) is one of

the most common types of evolutionary algorithms, which starts from an initial candidate number of

solutions and begins the evolutionary process by applying certain operators to produce new solutions

(Mansour, 2024). The newly produced solutions are expected to be better than the previous ones. The

initial population in GA is represented as chromosomes, and each chromosome consists of a number of

genes, which carry 1 or 0 values in binary-coded genetic algorithms (Majid et al., 2024). The initial

population evolves by applying natural operators like selection, crossover, and mutation to produce new

offspring in each iteration. The produced offspring must be evaluated by measuring the fitness function

and are supposed to be better than the initial population (Guo et al., 2010). GA will keep running until

it reaches one of the stopping conditions of the algorithm, such as reaching population convergence. In

some cases, the algorithm stops because of convergence with a suboptimal solution, referring to the

premature convergence occurrence problem (LaTorre & Molina, 2020).

Premature convergence is a problem that faces most evolutionary algorithms, especially GA. It means

that convergence has occurred in the optimization problem population too early as a consequence of the

inability of the parents to generate better offspring or children carrying better traits, which refers to a

failure in the genetic operators applied to the parents (Lei & Liu, 2020; Prasath, 2024). In simple words,

premature convergence happens when the algorithm returns a solution, but not the optimal one, because

it has gotten stuck in a single solution as a result of population convergence and loss of diversity (Lin et

al., 2010). Factors leading to premature convergence can be summarized in two main reasons: the first

one is self-adaptive mutations, and the second one is panmictic (unstructured) populations (Cui et al.,

2018). These two factors are considered the main reasons that affect population diversity and lead to the

loss of diversity. There are many premature convergence avoidance approaches that can be applied to

evolutionary algorithms to sustain population diversity, such as the crowding method, incest prevention

algorithm, scheduled sharing approach, cooperation-based approach, syntactic analysis of convergence,

random offspring generation approach, selective mutation approach, and dynamic reproduction

operators (Bi et al., 2021; Loganathan & Poonkodi, 2018).

Problem Statement: Premature convergence in evolutionary algorithms, particularly in GA, can be

defined as reaching the convergence of the population (chromosomes) for a specific optimization

problem too early, leading to a suboptimal solution (Carvalho & Fernandes, 2018). Premature

convergence is an obvious problem facing evolutionary algorithms, especially genetic algorithms, where

the candidate solution starts from the initial population (chromosomes) and evolves by applying the

known genetic crossover and mutation operators. The aim of applying the genetic algorithm operators

is to produce offspring in each iteration that are supposed to be better than their parents. However, if

premature convergence happens, it will lead to producing offspring carrying the same features and traits

as their parents without any improvements to their fitness value. The decision of reaching premature

convergence can be measured if 95% or more of the population carry the same value for a specific gene

in binary-coded GA (Lan, 2023). Convergence can be simply defined as the absence of population

diversity. The absence of population diversity leads directly to convergence, which will force the

evolutionary algorithm to stop evolving and return the dominant value as the candidate solution. This

solution, if convergence happens too early, leads to a suboptimal solution or not the global best solution.

In this case, the performance evaluation of the evolutionary algorithm will be low, and the main goal of

applying evolutionary algorithms will not be achieved. One of the approaches that can be used to sustain

population diversity and avoid premature convergence is dynamic reproduction operators.

Premature Avoidance in Genetic Algorithm using Dynamic

Mutation Probability

 Rawan Nassri Abulail

530

Research Objectives: The main objective of this research is proposing a method or algorithm to

overcome the problem of premature convergence. The researcher will use the dynamic reproduction

operator approach and propose a modification of the standard genetic algorithm by forcing the

probability of mutation to change depending on the fitness value in each iteration. Experiments will be

done to show the result of the modified GA algorithm, and the results will be displayed and discussed.

Research Structure: The research consists of five sections. The first section will give a brief

introduction about evolutionary algorithms, premature convergence, the research problem statement,

and the research objectives. The second section will cover the background and literature review of

evolutionary algorithms, genetic algorithms, premature convergence, factors that lead to premature

convergence, and finally the approaches that can be applied to avoid premature convergence occurrence.

The third section will display the research methodology, while the fourth section will show and discuss

the results of the research. Finally, the fifth section will summarize the results as a conclusion of the

research work.

2 Background and Literature Review

This section will display the background and literature review of evolutionary algorithms and their

importance and applications, genetic algorithms and their evolving life cycle, followed by the main

factors that affect genetic algorithms, the definition of premature convergence, and how it affects the

performance of genetic algorithms, factors that lead to premature convergence, and finally the

approaches that can be applied to avoid premature convergence occurrence (Jiménez-Carrión et al.,

2023).

Evolutionary Algorithms

Evolutionary algorithms are optimization algorithms and techniques based on biological and natural

evolution mechanisms. These algorithms are a subset of evolutionary computation and are categorized

under unsupervised learning (Zhao et al., 2024). The main characteristic of evolutionary algorithms is

that they start with many candidate solutions (population) instead of one solution and go through many

natural operations in order to produce better candidate solutions (offspring) for the optimization problem

((Yu et al., 2009) l., 2016; Lofandri et al., 2024). Evolutionary algorithms consist of many algorithms

and applications, such as mimetic algorithms, genetic algorithms, artificial immune systems, evolution

strategies, genetic programming, evolutionary programming, metaheuristics, ant colony optimization,

simulated annealing, and swarm optimization (Cheng et al., 2015).

Genetic Algorithm

GA is a nature-inspired algorithm used for searching and optimization problems. Genetics and natural

selection are the basic ideas for its evolution process. Genetic algorithm is categorized as one of the

evolutionary algorithms, which starts from an initial candidate number of solutions and begins the

evolutionary process by applying certain operators to produce new solutions. The newly produced

solution is expected to be better than the previous one. Many applications in different domains have

employed GAs successfully, such as economics, natural language processing, optimization,

bioinformatics, image processing, grammar inference, and pattern recognition. Holland was the first

developer of GA's basic principles. Then many researchers worked on those principles and provided

detailed overviews and descriptions to implement GAs in many domains and fields. GAs can be

summarized as follows: an initial population of candidate solutions for a specific optimization problem

is represented using encoding methods. In the implementation process, each candidate solution in the

initial population is evaluated by the value obtained from applying the objective function, which is being

Premature Avoidance in Genetic Algorithm using Dynamic

Mutation Probability

 Rawan Nassri Abulail

531

optimized. The obtained value is called the fitness value in GAs. The fitness value is the main measure

used in GAs for the reproduction process, starting with selecting the candidate parents to mate and

recombine to produce new offspring after applying the crossover and mutation operators. The new

offspring will carry most of their features from the candidate parents (Oh et al., 2004). The new offspring

is called the new population or the new generation, which means the initial population after

modifications. The quality of the new generation is evaluated by a measure called the fitness function.

This fitness function allocates a fitness value for each individual in the population. While the evolution

process is for searching or optimization, these fitness values will change as a consequence of the

reproduction operators. The GAs keeps running and producing new generations if there are

improvements in the fitness values. After a certain number of iterations or generations, strong individuals

will dominate the reproduction process because of their high fitness values, leading to a decrease in

population diversity. That low population diversity implies population convergence (Guo et al., 2010;

Moses et al., 2022). If GAs reach this convergence in the population, it means the reproduction process

will get stuck with fitness values, and there will be no improvements in the new offspring, which means

stopping the reproduction process and returning the last population as the optimal solution. The

remarkable issue in this case is that, in some cases, convergence happens very early, and the returned

value is actually suboptimal. This is called premature convergence, which is the problem that will be

discussed in detail in this research.

The fitness values of individuals in any population are the guidance for iterative search or

optimization in GAs. In each iteration, the individuals are evaluated by their fitness values, and the best

are selected as candidate parents. These obtained parents from the selection process will mate and

combine to produce offspring. It’s obvious that the parent features are partially preserved, and some of

their features will be lost in the new generations. This refers to the effect of reproduction operators

(crossover and mutation). The loss of some of the parent’s features leads to difficulties in managing the

offspring features. These difficulties result from many factors. The first one is that each individual in

the new generation appears to have been checked and seen before. The second reason is the competition

between individuals to survive, which leads some in the wrong direction. The third reason, originating

from the second one, is the consequence of leaving a large portion of the initial population unexplored

for the optimal solutions (Sun et al., 2021). GAs have been applied in many domains, as mentioned

before in this research, but they were not as adaptive as expected. This refers to the premature

convergence problem (Lin et al., 2010).

Genetic Algorithm Lifecycle

Figure (1) displays the life cycle of the standard genetic algorithm, starting from a random population

encoded by binary 0 or 1 values. After the encoding process is finished, each candidate solution is

evaluated by applying its value in the optimization problem to calculate the fitness value. The fitness

value will determine the probability of selecting that solution. After selecting the same number of the

initial population, the newly selected population will be divided into pairs to apply the reproduction

operators, crossover and mutation. After applying the two reproduction operators, the new offspring will

be produced. The new offspring will be evaluated by calculating its fitness values, and then the algorithm

will check if it has reached convergence or not. If convergence is reached, the algorithm will stop and

return the calculated solution; otherwise, it will repeat the iteration starting from the selection process

(Rowe, 2008). The genetic crossover and mutation operators play the most important role in the standard

genetic algorithm's performance.

Premature Avoidance in Genetic Algorithm using Dynamic

Mutation Probability

 Rawan Nassri Abulail

532

Figure 1: Standard Genetic Algorithm Life Cycle

Factors Affecting Standard Genetic Algorithm Performance

There are a number of factors that must be taken into account when evaluating the performance of the

standard GA. The most important factors can be listed as follows: initial candidate solutions, candidate

solutions diversity, fitness function, search space, pressure of the selection process, difficulty of the

problem to be optimized, and size of the population. The mentioned factors affect the performance of

the standard GA directly, and the most important factor is maintaining the population diversity to

guarantee that the algorithm will find the global optimal solution and avoid premature convergence

(Dimitrov & Baumann, 2011).

Premature Convergence

Premature convergence can be defined as a problem facing most evolutionary algorithms, especially

GA. It means that the convergence of a specific population is reached very early, giving the final solution

for an optimization problem, which forces the algorithm to stop and return the results. The results

obtained in this case are suboptimal; this is referred to as the failure of parents (chromosomes) to produce

better offspring carrying better traits than their parents. In other words, reproduction of the new

generations is useless, and the genetic reproduction operators are not adding any improvements to the

fitness values of the new offspring. Some researchers define the occurrence of convergence if 95% or

more of the offspring carry the same traits for a specific gene (Tinós et al., 2023).

Population diversity must be preserved during the evolution phases to avoid premature convergence.

It is not easy to determine the occurrence of premature convergence, and it is also hard to predict whether

it will occur in the future. There are many measurements that can be used to evaluate the improvement

of population fitness in each phase. One of them is the difference between the fitness average of the

previous population and the fitness average of the current population, and the second is calculating the

difference between the max fitness in the previous population and the maximum fitness in the current

population. In both cases, if there is a difference, it means that we haven’t reached convergence. But we

Calculate fitness score for each candidate solution

Reproduction operator crossover

Reproduction operator mutation

Replace the initial population by the new offspring

end

Apply the selection process

Reaching stopping

criteria

start

Initial candidate solution population

Premature Avoidance in Genetic Algorithm using Dynamic

Mutation Probability

 Rawan Nassri Abulail

533

must ensure that the differences lead to better fitness; in other words, improvement of the population's

feature quality (Yu et al., 2009). These differences, in some algorithms, are used to change the

probability of crossover and mutation that are applied in the reproduction process in a dynamic way to

produce new offspring after parent mating and exchanging their features. Another kind of measurement

is population diversity, which is commonly used to measure the occurrence of premature convergence.

The population diversity measurement depends on the idea that losing the population diversity leads

directly to premature convergence. However, there are many concerns related to the conditions that must

be applied to maintain population diversity, especially since it may affect the robustness of the

population (Kawulok & Kawulok, 2022).

What Factors Lead to Premature Convergence?

From the previous studies (Cheng et al., 2015) of genetic algorithms and premature convergence, the

researcher summarized the main causes that lead to premature convergence, which will be listed as

follows:

• Self-Adaptive Mutations

Self-adaptive mutations were proposed by Rechenberg. Its main concept is using evolution strategies

for self-adaptation in the mutation distributions. In other words, the parameters used to control the

mutation distributions use self-adaptation evolution instead of using predetermined parameters (Gliesch

et al., 2017). This new technique is called the “1/5-success rule of evolution strategies (1 + 1)-ES.” The

control parameter for the mutation step size will be increased based on some factors related to the ratio

of positive mutations to the total number of mutations (Yu et al., 2009). If the ratio is greater than 1/5 in

a specific period of time, then the control parameter for the step size will be increased, and if the ratio is

less than 1/5, then the control parameter will be decreased (Kawulok & Kawulok, 2022). Self-adaptive

mutation is considered one of the main causes for the occurrence of premature convergence.

• Panmictic (unstructured) Populations

Most evolutionary algorithms, especially genetic algorithms, start with an initial panmictic or

unstructured population of chromosomes, where every chromosome is eligible to be selected as a

candidate parent to mate and recombine to produce offspring based on their fitness value (Gliesch et al.,

2017). This means that the chromosomes with high fitness values can spread their features to the

produced populations in many generations. The produced generations will not be better than the previous

generations. This leads to a loss in population diversity, especially in small populations, and to premature

convergence as a consequence (Cui et al., 2018). One of the countermeasures that could be used to

preserve population diversity is switching to new models of populations, which means introducing

substructures into the initial population. This technique can preserve population diversity over a longer

time and a higher number of generations (Kawulok & Kawulok, 2022).

• Premature Convergence Occurrence Avoidance Approaches

Previous studies showed that many approaches have been proposed to regain population variation.

Each strategy targeted one of the GA phases; some of them are related to parents who will be mated and

recombined (mating strategy), and some researchers call it incest prevention. Another kind of approach

is related to the crossover operator, and it is called uniform crossover. There are also some strategies

dealing with the population itself before selection, and it depends on the idea of sorting the population

by their similarity and making replacements of the individuals. This strategy is called (crowding or

preselection). Some approaches use segmentation based on fitness values in the population by grouping

Premature Avoidance in Genetic Algorithm using Dynamic

Mutation Probability

 Rawan Nassri Abulail

534

individuals having similar fitness values into one segment. This strategy is called (fitness sharing). While

there are approaches targeting the population size to avoid premature convergence by increasing the size

of the population in order to maintain high diversity in the population features (Segura et al., 2013). In

addition to the mentioned approaches, premature convergence risk can be minimized by using structured

populations instead of (unstructured) panmictic populations (Bi et al., 2022). Finally, there are

approaches called dynamic reproduction operators that target the genetic algorithm crossover and

mutation operators by forcing their values to be dynamic, not fixed, depending on the offspring fitness

values. This research will modify the standard binary genetic algorithm by applying a modification to

the mutation operator using a dynamic value for the mutation probability. The mutation phase can play

an important role in preventing premature convergence by regaining genetic variation through applying

the process in a highly random way (Dadgar et al., 2017).

The Proposed Dynamic Mutation Operator

In this section, the researcher will explore the enhancements that were proposed to the mutation genetic

operator in the standard genetic algorithm. Let’s start by writing down the steps that are applied in the

standard GA process:

• Population initialization: Initialize a number of candidate solutions presented as chromosomes. 2-

Set stopping criteria: Setting the stopping criteria means defining the criteria that must be checked

at the end of each iteration. Some of these criteria are the maximum number of iterations

(generations), reaching the predefined goal value, or reaching population convergence. Population

convergence means that there are no improvements in the offspring (newly produced generation)

fitness value.

• Set crossover values: There are two main values that must be set in this step: the first one is the

probability for selection, and the second value is related to the crossover points, which clarify at

which points the traits (value of genes) will be exchanged if the crossover happens.

• Set mutation value: This step is very important because it has the main role of changing the gene

values and, in some cases, adding new values not inherited from parents. The mutation value can

be defined as the probability of mutation. The mutation operator will be applied to each gene in the

chromosome. For each gene, there will be a comparison between a random number and the mutation

probability. If the random number is less than the probability of mutation, the mutation will occur;

otherwise, the gene value will not be changed. To simplify the meaning of mutation in binary GA:

if the mutation happens, the value of 1 will be changed to 0, and if the value is 0, it will be changed

to 1.

• Fitness value (score) calculation: This step is done by applying the chromosome value in the

function being optimized and finding out the fitness value for each chromosome.

• Calculate the selection probability: This can be done in different ways, but the most common way

is to divide the fitness score for each chromosome by the summation of fitness scores in the

population.

• Apply the selection operator to the population and select parental solutions.

• Apply the crossover operator to produce offspring.

• Apply the mutation value to produce the modified offspring if any of their genes are affected by the

mutation probability.

• Offspring fitness value: After producing the new generation, the fitness scores must be calculated

again and compared with the previous fitness scores for the parental candidate solutions. 11-

Checking the predefined stopping conditions: If any of the predefined stopping conditions are met,

the algorithm will stop and return the final value.

Premature Avoidance in Genetic Algorithm using Dynamic

Mutation Probability

 Rawan Nassri Abulail

535

• 12- If not reaching any of the stopping conditions, go back to step five and apply the genetic

operators to the newly produced offspring to produce a new generation. The process of the standard

GA is displayed in Figure 2.

Figure 2: Standard GA process

After displaying the standard GA process and as the flowchart shows, the algorithm will stop running

after checking the stopping criteria for each iteration. All the stopping criteria are checked in one step.

In simple words, if any of the stopping criteria (conditions) are met, the algorithm will stop and return

the solution. As mentioned before, the stopping conditions in standard GA are the maximum number of

iterations (generations) predefined by the user, reaching the predefined goal value, or reaching

population convergence. Stopping the algorithm as a consequence of reaching the maximum number of

iterations or reaching the goal will return a satisfied solution for the user. But the main problem is

stopping the algorithm after reaching population convergence. In this case, there will be two scenarios:

the first happy scenario is that the convergence happened after reaching the optimal solution; the second

unhappy scenario is that the algorithm reached population convergence very early and returned a

solution that is not good enough. In this case, the occurrence of premature convergence happened in the

algorithm.

Start

Population initialization

Check Stopping criteria

End

Setting stopping criteria

Setting Crossover operator values

Setting mutation operator values

Fitness calculation Initial population

Selection probability calculation

Produce offspring (New generation)

Calculate offspring Fitness score

Apply mutation operator

Apply crossover operator

Apply selection operator

Premature Avoidance in Genetic Algorithm using Dynamic

Mutation Probability

 Rawan Nassri Abulail

536

The researcher has proposed a modification to the standard GA algorithm to overcome the premature

occurrence, which happened as a consequence of the inability of the algorithm to generate a new

population with higher fitness values or scores, with no improvements to the new offspring. To overcome

this problem, two main modifications were added to the standard GA. The first one is to divide the

checking points for stopping the algorithm into two separate points. The first checking point is to check

the predefined maximum number of iterations and the predefined goal. If any of them is reached, the

algorithm will return the solution. While the second checking point is to check population convergence,

in this checking point, the algorithm must decide if the convergence occurred with a satisfied solution

or if it happened very early. If the population converged very early, the algorithm reached premature

convergence because the population lost its diversity and the genetic operators are unable to produce

improved offspring. The second modification proposed by the researcher to overcome the problem of

losing the diversity in the population is to force the algorithm to add new features and traits to the

population using a dynamic mutation operator instead of using a fixed probability of mutation. The

researcher’s suggestion is to increase the probability of the preset value of mutation probability. To

specify the optimal value of mutation probability, the researcher conducted a number of experiments

with different population sizes and different mutation probabilities and found that the best modification

for any preset mutation probability is to multiply the value by two. The increase in the mutation

probability will ensure that more genes in the offspring will be affected by the mutation operator, leading

to the addition of new features and traits to the population, especially in binary GA. The conducted

experiments will be displayed in the next sections of this research. The proposed enhancement and

modifications to the GA process will be presented in the following steps and flowchart:

• Population initialization: Initialize a number of candidate solutions presented as chromosomes.

• Set stopping criteria: Setting the stopping criteria means defining the criteria that must be checked

at the end of each iteration. Some of these criteria are the maximum number of iterations

(generations), reaching the predefined goal value, or reaching population convergence. Population

convergence means that there are no improvements in the offspring (newly produced generation)

fitness value.

• Set crossover values: There are two main values that must be set in this step: the first one is the

probability for selection, and the second value is related to the crossover points, which clarify at

which points the traits (value of genes) will be exchanged if the crossover happens.

• Set mutation value: This step is very important because it has the main role of changing the gene

values and, in some cases, adding new values not inherited from the parent. The mutation value can

be defined as the probability of mutation. The mutation operator will be applied to each gene in the

chromosome. For each gene, there will be a comparison between a random number and the mutation

probability. If the random number is less than the probability of mutation, the mutation will occur;

otherwise, the gene value will not be changed. To simplify the meaning of mutation in binary GA:

if the mutation happens, the value of 1 will be changed to 0, and if the value is 0, it will be changed

to 1.

• Fitness value (score) calculation: This step is done by applying the chromosome value in the

function being optimized and finding out the fitness value for each chromosome.

• Calculate the selection probability: This can be done in different ways, but the most common way

is to divide the fitness score for each chromosome by the summation of fitness scores in the

population.

• Apply selection operator to population and select parental solutions.

• Apply crossover operator to produce offspring.

Premature Avoidance in Genetic Algorithm using Dynamic

Mutation Probability

 Rawan Nassri Abulail

537

• Apply mutation value to produce the modified offspring if any of their genes are affected by the

mutation probability.

• Offspring fitness value: After producing the new generation, the fitness scores must be calculated

again and compared with the previous fitness scores for the parental candidate solutions.

• Check population convergence: In this case, if the algorithm returns an acceptable solution, then

stop; otherwise, go back to step 4 and modify the mutation value by multiplying it by two.

• Check the other two stopping conditions: the max number of iterations or reaching the predefined

goal value. If any of them are met, the algorithm will stop and return the final value.

• If none of the stopping conditions are met, go back to step five and apply the genetic operators to

the newly produced offspring to produce a new generation. The process of the standard GA is

displayed in Figure 3.

Figure 3: The Proposed Dynamic Mutation Operator GA Process

No

Yes

Start

Population initialization

Population convergence

End

Setting stopping criteria

Fitness calculation Initial population

Selection probability calculation

 Setting Crossover operator values

Setting mutation operator values

Produce offspring (New generation)

Calculate offspring Fitness score

Apply mutation operator

Apply crossover operator

Apply selection operator

Max # of iteration or

Reaching goal

Yes

No

Premature Avoidance in Genetic Algorithm using Dynamic

Mutation Probability

 Rawan Nassri Abulail

538

3 Research Methodology

Conducting experiments is the methodology which was applied by the researcher to show the results

achieved after applying the enhanced standard genetic algorithm (modifying the mutation probability if

the algorithm stuck because of convergence occurrence). Three different experiments were conducted

to find the best solution for x2 function. The first experiment with n=20 for the population size, the

second experiment with n=40, while the third one with n=100 for the population size. In each experiment

five different mutation probabilities were applied to compare the results of the calculated fitness function

to find out if there is an improvement of results for the x2 function being optimized. 100 generations

were produced by applying 10,000 iterations in each experiment, binary genetic algorithm was used for

running iterations using 16 bits to represent the candidate solution into 16-bit chromosomes lengths, the

probability of cross over genetic operator was set to 0.3 while the probability of mutation genetic

operator was set to 0.03, then multiply the mutation probability by 2, 4,6,8 and 10 respectively. Finally,

the researcher uses random seed for the purpose of generating random number which used in the

reproduction phase (selection, crossover and mutation). The experiments details are summarized in table

(1).

Table 1: The conducted experiment details

Size of

population

Number of

applied

iterations

Optimizing the

maximization of x2

function

Chromosomes

length

Crossover

probability

Mutation

probability

Fitness

N=20 10000 x2 16 bits 0.3 0.03

0.03*2

0.03*4

0.03*6

0.03*10

Fitness scores

average

N=40 10000 x2 16 bits 0.3 0.03

0.03*2

0.03*4

0.03*6

0.03*10

Fitness scores

average

N=100 10000 x2 16 bit 0.3 0.03

0.03*2

0.03*4

0.03*6

0.03*10

Fitness scores

average

4 Results and Discussion

After conducting the experiments using different sizes of population with fixed value of mutation, the

obtained solutions using standard genetic algorithm were kept to compare them later with the solutions

which will be obtained using the modified genetic algorithm by applying the dynamic genetic mutation

operators. After that the researcher had conducting the same experiments with same population sizes

with different values of mutations probabilities, the different values of the mutation probability were

obtained as a value of multiplying the mutation probability by 2, 4,6 and 10 respectively. The Genetic

algorithm performance depending on the fitness scores were represented in figure 4, figure 5 and figure

6. The lines different colors in the figures represents the performance regarding value of mutation

probability, where the orange line represent the performance using standard GA with fixed value of

mutation probability, light blue with the value of mutation probability multiplied by 2, gray with the

value of mutation probability multiplied by 4, yellow with the value of mutation probability multiplied

by 6 and finally dark blue with the value of mutation probability multiplied by 10. The conducted

experiments generated 100 generation after applying 10000 iterations

Premature Avoidance in Genetic Algorithm using Dynamic

Mutation Probability

 Rawan Nassri Abulail

539

Figure 4: Performance Results for Population Size =20

Figure 5: Performance Results for Population Size =40

Figure 6: Performance Results for Population Size =100

As shown in figures 4,5 and 6, there were improvements in fitness scores which improved the

performance of genetic algorithm for the produced generations(offspring). Applying a dynamic value of

3.7E+09

3.71E+09

3.72E+09

3.73E+09

3.74E+09

3.75E+09

3.76E+09

3.77E+09

3.78E+09

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

F
u

n
ct

io
n

 V
al

u
e

(x
2

)

Generation

Population Performance average

Size: 20

(Average of 10,000 Tests)

Mutation Scalar: 1

Mutation Scalar: 2

Mutation Scalar: 4

Mutation Scalar: 6

Mutation Scalar: 10

3.7E+09

3.72E+09

3.74E+09

3.76E+09

3.78E+09

3.8E+09

3.82E+09

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

F
u

n
ct

io
n

 V
al

u
e

(x
2

)

Generation

Population Performance average

population Size: 40

(Average of 10,000 Tests)

Mutation Scalar: 1

Mutation Scalar: 2

Mutation Scalar: 4

Mutation Scalar: 6

Mutation Scalar: 10

3.7E+09

3.72E+09

3.74E+09

3.76E+09

3.78E+09

3.8E+09

3.82E+09

3.84E+09

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

F
u

n
ct

io
n

 V
al

u
e

(x
2

)

Generation

Population Performance average

population Size: 100

(Average of 10,000 Tests)

Mutation Scalar: 1

Mutation Scalar: 2

Mutation Scalar: 4

Mutation Scalar: 6

Mutation Scalar: 10

Premature Avoidance in Genetic Algorithm using Dynamic

Mutation Probability

 Rawan Nassri Abulail

540

genetic mutation operators played a major role in that performance improvements. The second main

result which was concluded from the experiments shows that the best performance was after applying

the value of mutation multiplied by two. The enhancement which was proposed by the researcher if the

standard GA reaches the premature convergence is to set a new value for the predefined mutation

probability by multiply it by two.

5 Conclusion

In this research the researcher has presented the standard genetic algorithm as one type of evolutionary

algorithms describing its importance and different applications, then the genetic algorithm process was

explained in details showing the different phases and genetic operators which applied to initial

population to produce offspring. The stopping conditions of GA was mentioned in this research. One of

the stopping conditions for GA is reaching population convergence. An explanation of convergence and

premature convergence were presented showing the causes that lead to premature convergence

occurrence. The main cause for premature convergence is the absence of population diversity which

means that all the chromosomes in the population almost the same and as a consequence the GA will be

unable to produce better offspring or better generations. Then the researcher has presented the

importance of mutation genetic operator and its ability to maintain the population diversity because it is

the only genetic operator which can add new values or traits to the chromosomes by changing its gene

values especially in binary GA. Mutation operator is vital in maintaining the population diversity, the

researcher proposed an enhancement to standard GA regarding mutation operator. The modification

which was proposed by researcher is forcing the standard GA to check population convergence after

each iteration, if population convergence was reached the algorithm evaluates the result obtained, if the

result is acceptable then stop and return back the result, but if the result is not acceptable then change

the predefined mutation probability value by multiplying it by two then apply the new mutation operator

to offspring. These enhancements were presented as steps and flow chart. Number of experiments was

conducted by the researcher to find out the best way to apply the dynamic mutation probability value,

the results showed that the best improvements for population and produced generations is changing

mutation probability value by multiply it by two.

As a conclusion an adaptive mutation probability technique when applied to standard GA achieved

improvements in its performance by increasing fitness values and scores in the new produced population

and prevent the occurrence of premature population convergence by maintaining population diversity.

References

[1] Bi, J., Yuan, H., Zhai, J., Zhou, M., & Poor, H. V. (2022). Self-adaptive bat algorithm with

genetic operations. IEEE/CAA Journal of Automatica Sinica, 9(7), 1284-1294.

https://doi.org/10.1109/JAS.2022.105695

[2] Bi, J., Zhai, J., & Yuan, H. (2021, December). An Adaptive Hybrid Bat Algorithm with Genetic

Operations and Dynamic Inertia Weight. In 2021 IEEE International Conference on

Networking, Sensing and Control (ICNSC) (Vol. 1, pp. 1-6). IEEE.

https://doi.org/10.1109/ICNSC52481.2021.9702210

[3] Carvalho, L. C. F., & Fernandes, M. A. (2018, July). Convergence analysis of evolutionary

algorithms solving the Flexible Job Shop Problem. In 2018 IEEE Congress on Evolutionary

Computation (CEC) (pp. 1-7). IEEE. https://doi.org/10.1109/CEC.2018.8477685

[4] Cheng, J., Yen, G. G., & Zhang, G. (2015). A many-objective evolutionary algorithm with

enhanced mating and environmental selections. IEEE Transactions on Evolutionary

Computation, 19(4), 592-605. https://doi.org/10.1109/TEVC.2015.2424921

Premature Avoidance in Genetic Algorithm using Dynamic

Mutation Probability

 Rawan Nassri Abulail

541

[5] Cui, L., Huang, Q., Li, G., Yang, S., Ming, Z., Wen, Z., ... & Lu, J. (2018). Differential evolution

algorithm with tracking mechanism and backtracking mechanism. IEEE Access, 6, 44252-

44267.https://doi.org/10.1109/ACCESS.2018.2864324

[6] Dadgar, M., Couceiro, M. S., & Hamzeh, A. (2017, October). RDPSO diversity enhancement

based on repulsion between similar ions for robotic target searching. In 2017 Artificial

Intelligence and Signal Processing Conference (AISP) (pp. 275-280). IEEE.

https://doi.org/10.1109/AISP.2017.8324096

[7] Dimitrov, T., & Baumann, M. (2011, July). Genetic algorithm with genetic engineering

technology for multi-objective dynamic job shop scheduling problems. In Proceedings of the

13th annual conference companion on Genetic and evolutionary computation (pp. 833-834).

https://doi.org/10.1145/2001858.2002112

[8] Gliesch, A., Ritt, M., & Moreira, M. C. (2017, July). A genetic algorithm for fair land allocation.

In Proceedings of the Genetic and Evolutionary Computation Conference (pp. 793-800).

https://doi.org/10.1145/3071178.3071313

[9] Guo, P., Wang, X., & Han, Y. (2010, October). The enhanced genetic algorithms for the

optimization design. In 2010 3rd international conference on biomedical engineering and

informatics (Vol. 7, pp. 2990-2994). IEEE. https://doi.org/10.1109/BMEI.2010.5639829

[10] Jiménez-Carrión, M., Flores-Fernandez, G. A., & Jiménez-Panta, A. B. (2023). Efficient Transit

Network Design, Frequency Adjustment, and Fleet Calculation Using Genetic

Algorithms. Journal of Internet Services and Information Security, 13(3), 26-49.

https://doi.org/1010.58346/JISIS.2023.I4.003

[11] Kawulok, J., & Kawulok, M. (2022, July). A genetic algorithm for classifying metagenomic

data. In Proceedings of the Genetic and Evolutionary Computation Conference Companion (pp.

59-60).https://doi.org/10.1145/3520304.3533944

[12] Lan, Y. (2023, March). Binary-like Real Coding Genetic Algorithm. In 2023 International

Conference on Pattern Recognition, Machine Vision and Intelligent Algorithms (PRMVIA) (pp.

98-102). IEEE. https://doi.org/10.1109/PRMVIA58252.2023.00023

[13] LaTorre, A., & Molina, D. (2020, July). On The Role of Execution Order In Hybrid

Evolutionary Algorithms. In 2020 IEEE Congress on Evolutionary Computation (CEC) (pp. 1-

8). IEEE. https://doi.org/10.1109/CEC48606.2020.9185676

[14] Lei, L., & Liu, N. (2020, October). Research on optimization performance of nonlinear function

based on multigroup genetic algorithm. In 2020 IEEE 20th International Conference on

Communication Technology (ICCT) (pp. 1498-1502). IEEE.

https://doi.org/10.1109/ICCT50939.2020.9295871

[15] Lin, F., Zhou, C., & Chang, K. (2010). Convergence rate analysis of allied genetic algorithm.

49th IEEE Conference on Decision and Control (CDC), 786–791.

[16] Lofandri, W., Selvakumar, C., Sah, B., & Sangeetha, M. (2024). Design and Optimization of a

High-Speed VLSI Architecture for Integrated FIR Filters in Advanced Digital Signal Processing

Applications. Journal of VLSI Circuits and Systems, 6(1), 70-

77. https://doi.org/10.31838/jvcs/06.01.12

[17] Loganathan, P., & Poonkodi, M. (2018). A Dual CUK AC/DC Converter for DC Nano-Grid

with Three Terminal Outputs. International Journal of Advances in Engineering and Emerging

Technology, 9(3), 119-129.

[18] Majid, U. M. A., Atan, N. A., Rukli, R., & Khan, A. (2024). Framework of Computer Science

Learning Through Hybrid Service-Learning Oriented Visual Toward the Continuum of

Visualization Thinking and Generic Skills. Indian Journal of Information Sources and

Services, 14(3), 192–206. https://doi.org/10.51983/ijiss-2024.14.3.25

[19] Mansour, M. M. (2024). Using a Genetic Algorithm to Determine the Best Factory Layout in

Southern Iraq: Review. International Academic Journal of Science and Engineering, 11(1),

362–373. https://doi.org/10.9756/IAJSE/V11I1/IAJSE1141

https://doi.org/10.1109/ACCESS.2018.2864324
https://doi.org/10.1145/3520304.3533944
https://doi.org/10.1109/ICCT50939.2020.9295871

Premature Avoidance in Genetic Algorithm using Dynamic

Mutation Probability

 Rawan Nassri Abulail

542

[20] Moses, M. B., Nithya, S. E., & Parameswari, M. (2022). Internet of things and geographical

information system-based monitoring and mapping of real time water quality

system. International Journal of Environmental Sciences, 8(1), 27-36.

[21] Muralidharan, J. (2024). Optimization techniques for energy-efficient RF power amplifiers in

wireless communication systems. SCCTS Journal of Embedded Systems Design and

Applications, 1(1), 1-5. https://doi.org/10.31838/ESA/01.01.01

[22] Oh, I. S., Lee, J. S., & Moon, B. R. (2004). Hybrid genetic algorithms for feature selection. IEEE

Transactions on pattern analysis and machine intelligence, 26(11), 1424-

1437.https://doi.org/10.1109/TPAMI.2004.105

[23] Prasath, C. A. (2024). Optimization of FPGA architectures for real-time signal processing in

medical devices. Journal of Integrated VLSI, Embedded and Computing Technologies, 1(1), 11-

15. https://doi.org/10.31838/JIVCT/01.01.03

[24] Rowe, J. E. (2008, July). Genetic algorithm theory. In Proceedings of the 10th annual

conference companion on Genetic and evolutionary computation (pp. 2535-2558).

https://doi.org/10.1145/2330784.2330923

[25] Sadulla, S. (2024). Optimization of data aggregation techniques in IoT-based wireless sensor

networks. Journal of Wireless Sensor Networks and IoT, 1(1), 31-36.

https://doi.org/10.31838/WSNIOT/01.01.05

[26] Segura, C., Coello, C. A. C., Segredo, E., Miranda, G., & León, C. (2013, June). Improving the

diversity preservation of multi-objective approaches used for single-objective optimization.

In 2013 IEEE congress on evolutionary computation (pp. 3198-3205). IEEE.

https://doi.org/10.1109/CEC.2013.6557961

[27] Sun, W., Yuan, H., Su, Q., & Chen, Y. (2021, September). Optimize performance analysis on

Adaptive Genetic Algorithm with Linear Adjustment of Probabilities. In 2021 International

Conference on Computer Information Science and Artificial Intelligence (CISAI) (pp. 517-520).

IEEE. https://doi.org/10.1109/CISAI54367.2021.00105

[28] Tinós, R., Przewozniczek, M., Whitley, D., & Chicano, F. (2023, July). Genetic algorithm with

linkage learning. In Proceedings of the Genetic and Evolutionary Computation Conference (pp.

981-989). https://doi.org/10.1145/3583131.3590349

[29] Vikhar, P. A. (2016, December). Evolutionary algorithms: A critical review and its future

prospects. In 2016 International conference on global trends in signal processing, information

computing and communication (ICGTSPICC) (pp. 261-265). IEEE.

https://doi.org/10.1109/ICGTSPICC.2016.7955308

[30] Xue, B., Zhang, M., Browne, W. N., & Yao, X. (2015). A survey on evolutionary computation

approaches to feature selection. IEEE Transactions on evolutionary computation, 20(4), 606-

626.https://doi.org/10.1109/TEVC.2015.2504420

[31] Yu, Y. M., Zhao, G. Q., & Liu, J. D. (2009). Hyperchaotic genetic algorithm theory and

functions optimization. In Proceedings of the first ACM/SIGEVO Summit on Genetic and

Evolutionary Computation (pp. 1041-1044). https://doi.org/10.1145/1543834.1544003

[32] Zhao, Y., Ding, Y., & Pei, Y. (2024). Adaptive Optimization in Evolutionary Reinforcement

Learning Using Evolutionary Mutation Rates. IEEE Access.

https://doi.org/10.1109/ACCESS.2024.3493198

Author Biography

Rawan Abulail is an Associate Professor in Philadelphia University and currently working as

the head of computer science department in the information technology faculty. She received her

B.Sc. degree in computer science and computer information systems from Philadelphia University,

Amman, Jordan in 2002, B.Sc. degree in accounting from Philadelphia University, Amman, Jordan

in 2004 M.Sc. and Ph.D. degrees from The Arab Academy for Banking and Financial Sciences,

Amman, Jordan, in 2004, and 2009 respectively, all in Computer Information Systems.

https://doi.org/10.1145/3583131.3590349

