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Abstract 

Evolutionary algorithms are optimization techniques based on biological and natural evolution 

mechanisms. These algorithms are a subset of evolutionary computation and fall under unsupervised 

learning. The Genetic Algorithm (GA) is one of the most common types of evolutionary algorithms. 

It begins with an initial set of candidate solutions and starts the evolutionary process by applying 

certain operators to generate new solutions. The newly produced solutions are expected to 

outperform the previous ones. Premature convergence is a problem encountered by most 

evolutionary algorithms, particularly genetic algorithms. It occurs when parental solutions fail to 

generate better offspring or children with superior traits. Self-adaptive mutations and Panmictic 

populations are the main factors contributing to premature convergence. Several approaches can be 

applied to avoid premature convergence and sustain population diversity, including the crowding 

method, incest prevention algorithm, scheduled sharing approach, cooperation-based approach, 

syntactic analysis of convergence, random offspring generation, selective mutation, and dynamic 

reproduction operators. The lack of population diversity leads directly to convergence, forcing the 

evolutionary algorithm to stop evolving and return the dominant value as the candidate solution. In 

most cases, this is not an optimal solution. One approach to sustaining population diversity is 

applying dynamic reproduction genetic operators. The main objective of this research is to propose 

an enhancement to the standard genetic algorithm to overcome premature convergence. A dynamic 

reproduction mutation operator is proposed to vary the probability of mutation based on the fitness 

value in each iteration. The methodology employed by the researcher involves conducting 

experiments to demonstrate the results achieved after applying the enhanced genetic algorithm 

(Rowe, 2008). Three different experiments with varying population sizes and mutation probability 

values were carried out to identify the best solution for an optimization problem. A total of 100 

generations were produced by applying 10,000 iterations, and a binary genetic algorithm was used 

for running iterations with 16-bit chromosome lengths to represent candidate solutions. The results 

show that improvements in fitness scores were achieved, which enhanced the performance of the 

genetic algorithm for the produced generations (offspring). Moreover, population diversity was 

maintained. 

Keywords: Evolutionary Algorithms, Genetic Algorithms, Premature Convergence, Dynamic 

Mutation Probability. 

1 Introduction 

Evolutionary algorithms are optimization algorithms based on biological and natural evolution 

mechanisms (Muralidharan, 2024). These algorithms are a subset of evolutionary computation and are 
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categorized under unsupervised learning (Vikhar, 2016). The main characteristic of evolutionary 

algorithms is that they start with many candidate solutions (population) instead of one solution and go 

through many natural operations in order to produce better candidate solutions (offspring) for the 

optimization problem (LaTorre & Molina, 2020; Sadulla, 2024). The Genetic Algorithm (GA) is one of 

the most common types of evolutionary algorithms, which starts from an initial candidate number of 

solutions and begins the evolutionary process by applying certain operators to produce new solutions 

(Mansour, 2024). The newly produced solutions are expected to be better than the previous ones. The 

initial population in GA is represented as chromosomes, and each chromosome consists of a number of 

genes, which carry 1 or 0 values in binary-coded genetic algorithms (Majid et al., 2024). The initial 

population evolves by applying natural operators like selection, crossover, and mutation to produce new 

offspring in each iteration. The produced offspring must be evaluated by measuring the fitness function 

and are supposed to be better than the initial population (Guo et al., 2010). GA will keep running until 

it reaches one of the stopping conditions of the algorithm, such as reaching population convergence. In 

some cases, the algorithm stops because of convergence with a suboptimal solution, referring to the 

premature convergence occurrence problem (LaTorre & Molina, 2020). 

Premature convergence is a problem that faces most evolutionary algorithms, especially GA. It means 

that convergence has occurred in the optimization problem population too early as a consequence of the 

inability of the parents to generate better offspring or children carrying better traits, which refers to a 

failure in the genetic operators applied to the parents (Lei & Liu, 2020; Prasath, 2024). In simple words, 

premature convergence happens when the algorithm returns a solution, but not the optimal one, because 

it has gotten stuck in a single solution as a result of population convergence and loss of diversity (Lin et 

al., 2010). Factors leading to premature convergence can be summarized in two main reasons: the first 

one is self-adaptive mutations, and the second one is panmictic (unstructured) populations (Cui et al., 

2018). These two factors are considered the main reasons that affect population diversity and lead to the 

loss of diversity. There are many premature convergence avoidance approaches that can be applied to 

evolutionary algorithms to sustain population diversity, such as the crowding method, incest prevention 

algorithm, scheduled sharing approach, cooperation-based approach, syntactic analysis of convergence, 

random offspring generation approach, selective mutation approach, and dynamic reproduction 

operators (Bi et al., 2021; Loganathan & Poonkodi, 2018). 

Problem Statement: Premature convergence in evolutionary algorithms, particularly in GA, can be 

defined as reaching the convergence of the population (chromosomes) for a specific optimization 

problem too early, leading to a suboptimal solution (Carvalho & Fernandes, 2018). Premature 

convergence is an obvious problem facing evolutionary algorithms, especially genetic algorithms, where 

the candidate solution starts from the initial population (chromosomes) and evolves by applying the 

known genetic crossover and mutation operators. The aim of applying the genetic algorithm operators 

is to produce offspring in each iteration that are supposed to be better than their parents. However, if 

premature convergence happens, it will lead to producing offspring carrying the same features and traits 

as their parents without any improvements to their fitness value. The decision of reaching premature 

convergence can be measured if 95% or more of the population carry the same value for a specific gene 

in binary-coded GA (Lan, 2023). Convergence can be simply defined as the absence of population 

diversity. The absence of population diversity leads directly to convergence, which will force the 

evolutionary algorithm to stop evolving and return the dominant value as the candidate solution. This 

solution, if convergence happens too early, leads to a suboptimal solution or not the global best solution. 

In this case, the performance evaluation of the evolutionary algorithm will be low, and the main goal of 

applying evolutionary algorithms will not be achieved. One of the approaches that can be used to sustain 

population diversity and avoid premature convergence is dynamic reproduction operators. 
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Research Objectives: The main objective of this research is proposing a method or algorithm to 

overcome the problem of premature convergence. The researcher will use the dynamic reproduction 

operator approach and propose a modification of the standard genetic algorithm by forcing the 

probability of mutation to change depending on the fitness value in each iteration. Experiments will be 

done to show the result of the modified GA algorithm, and the results will be displayed and discussed. 

Research Structure: The research consists of five sections. The first section will give a brief 

introduction about evolutionary algorithms, premature convergence, the research problem statement, 

and the research objectives. The second section will cover the background and literature review of 

evolutionary algorithms, genetic algorithms, premature convergence, factors that lead to premature 

convergence, and finally the approaches that can be applied to avoid premature convergence occurrence. 

The third section will display the research methodology, while the fourth section will show and discuss 

the results of the research. Finally, the fifth section will summarize the results as a conclusion of the 

research work. 

2 Background and Literature Review 

This section will display the background and literature review of evolutionary algorithms and their 

importance and applications, genetic algorithms and their evolving life cycle, followed by the main 

factors that affect genetic algorithms, the definition of premature convergence, and how it affects the 

performance of genetic algorithms, factors that lead to premature convergence, and finally the 

approaches that can be applied to avoid premature convergence occurrence (Jiménez-Carrión et al., 

2023). 

Evolutionary Algorithms 

Evolutionary algorithms are optimization algorithms and techniques based on biological and natural 

evolution mechanisms. These algorithms are a subset of evolutionary computation and are categorized 

under unsupervised learning (Zhao et al., 2024). The main characteristic of evolutionary algorithms is 

that they start with many candidate solutions (population) instead of one solution and go through many 

natural operations in order to produce better candidate solutions (offspring) for the optimization problem 

((Yu et al., 2009) l., 2016; Lofandri et al., 2024). Evolutionary algorithms consist of many algorithms 

and applications, such as mimetic algorithms, genetic algorithms, artificial immune systems, evolution 

strategies, genetic programming, evolutionary programming, metaheuristics, ant colony optimization, 

simulated annealing, and swarm optimization (Cheng et al., 2015). 

Genetic Algorithm 

GA is a nature-inspired algorithm used for searching and optimization problems. Genetics and natural 

selection are the basic ideas for its evolution process. Genetic algorithm is categorized as one of the 

evolutionary algorithms, which starts from an initial candidate number of solutions and begins the 

evolutionary process by applying certain operators to produce new solutions. The newly produced 

solution is expected to be better than the previous one. Many applications in different domains have 

employed GAs successfully, such as economics, natural language processing, optimization, 

bioinformatics, image processing, grammar inference, and pattern recognition. Holland was the first 

developer of GA's basic principles. Then many researchers worked on those principles and provided 

detailed overviews and descriptions to implement GAs in many domains and fields. GAs can be 

summarized as follows: an initial population of candidate solutions for a specific optimization problem 

is represented using encoding methods. In the implementation process, each candidate solution in the 

initial population is evaluated by the value obtained from applying the objective function, which is being 
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optimized. The obtained value is called the fitness value in GAs. The fitness value is the main measure 

used in GAs for the reproduction process, starting with selecting the candidate parents to mate and 

recombine to produce new offspring after applying the crossover and mutation operators. The new 

offspring will carry most of their features from the candidate parents (Oh et al., 2004). The new offspring 

is called the new population or the new generation, which means the initial population after 

modifications. The quality of the new generation is evaluated by a measure called the fitness function. 

This fitness function allocates a fitness value for each individual in the population. While the evolution 

process is for searching or optimization, these fitness values will change as a consequence of the 

reproduction operators. The GAs keeps running and producing new generations if there are 

improvements in the fitness values. After a certain number of iterations or generations, strong individuals 

will dominate the reproduction process because of their high fitness values, leading to a decrease in 

population diversity. That low population diversity implies population convergence (Guo et al., 2010; 

Moses et al., 2022). If GAs reach this convergence in the population, it means the reproduction process 

will get stuck with fitness values, and there will be no improvements in the new offspring, which means 

stopping the reproduction process and returning the last population as the optimal solution. The 

remarkable issue in this case is that, in some cases, convergence happens very early, and the returned 

value is actually suboptimal. This is called premature convergence, which is the problem that will be 

discussed in detail in this research. 

The fitness values of individuals in any population are the guidance for iterative search or 

optimization in GAs. In each iteration, the individuals are evaluated by their fitness values, and the best 

are selected as candidate parents. These obtained parents from the selection process will mate and 

combine to produce offspring. It’s obvious that the parent features are partially preserved, and some of 

their features will be lost in the new generations. This refers to the effect of reproduction operators 

(crossover and mutation). The loss of some of the parent’s features leads to difficulties in managing the 

offspring features. These difficulties result from many factors. The first one is that each individual in 

the new generation appears to have been checked and seen before. The second reason is the competition 

between individuals to survive, which leads some in the wrong direction. The third reason, originating 

from the second one, is the consequence of leaving a large portion of the initial population unexplored 

for the optimal solutions (Sun et al., 2021). GAs have been applied in many domains, as mentioned 

before in this research, but they were not as adaptive as expected. This refers to the premature 

convergence problem (Lin et al., 2010). 

Genetic Algorithm Lifecycle 

Figure (1) displays the life cycle of the standard genetic algorithm, starting from a random population 

encoded by binary 0 or 1 values. After the encoding process is finished, each candidate solution is 

evaluated by applying its value in the optimization problem to calculate the fitness value. The fitness 

value will determine the probability of selecting that solution. After selecting the same number of the 

initial population, the newly selected population will be divided into pairs to apply the reproduction 

operators, crossover and mutation. After applying the two reproduction operators, the new offspring will 

be produced. The new offspring will be evaluated by calculating its fitness values, and then the algorithm 

will check if it has reached convergence or not. If convergence is reached, the algorithm will stop and 

return the calculated solution; otherwise, it will repeat the iteration starting from the selection process 

(Rowe, 2008). The genetic crossover and mutation operators play the most important role in the standard 

genetic algorithm's performance. 
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Figure 1: Standard Genetic Algorithm Life Cycle 

Factors Affecting Standard Genetic Algorithm Performance 

There are a number of factors that must be taken into account when evaluating the performance of the 

standard GA. The most important factors can be listed as follows: initial candidate solutions, candidate 

solutions diversity, fitness function, search space, pressure of the selection process, difficulty of the 

problem to be optimized, and size of the population. The mentioned factors affect the performance of 

the standard GA directly, and the most important factor is maintaining the population diversity to 

guarantee that the algorithm will find the global optimal solution and avoid premature convergence 

(Dimitrov & Baumann, 2011). 

Premature Convergence 

Premature convergence can be defined as a problem facing most evolutionary algorithms, especially 

GA. It means that the convergence of a specific population is reached very early, giving the final solution 

for an optimization problem, which forces the algorithm to stop and return the results. The results 

obtained in this case are suboptimal; this is referred to as the failure of parents (chromosomes) to produce 

better offspring carrying better traits than their parents. In other words, reproduction of the new 

generations is useless, and the genetic reproduction operators are not adding any improvements to the 

fitness values of the new offspring. Some researchers define the occurrence of convergence if 95% or 

more of the offspring carry the same traits for a specific gene (Tinós et al., 2023). 

Population diversity must be preserved during the evolution phases to avoid premature convergence. 

It is not easy to determine the occurrence of premature convergence, and it is also hard to predict whether 

it will occur in the future. There are many measurements that can be used to evaluate the improvement 

of population fitness in each phase. One of them is the difference between the fitness average of the 

previous population and the fitness average of the current population, and the second is calculating the 

difference between the max fitness in the previous population and the maximum fitness in the current 

population. In both cases, if there is a difference, it means that we haven’t reached convergence. But we 

Calculate fitness score for each candidate solution 

 

Reproduction operator crossover 

Reproduction operator mutation 

Replace the initial population by the new offspring 

end 

 

Apply the selection process 

Reaching stopping 

criteria 

 

start 

 

Initial candidate solution population 



Premature Avoidance in Genetic Algorithm using Dynamic 

Mutation Probability 

                                 Rawan Nassri Abulail 

 

533 

must ensure that the differences lead to better fitness; in other words, improvement of the population's 

feature quality (Yu et al., 2009). These differences, in some algorithms, are used to change the 

probability of crossover and mutation that are applied in the reproduction process in a dynamic way to 

produce new offspring after parent mating and exchanging their features. Another kind of measurement 

is population diversity, which is commonly used to measure the occurrence of premature convergence. 

The population diversity measurement depends on the idea that losing the population diversity leads 

directly to premature convergence. However, there are many concerns related to the conditions that must 

be applied to maintain population diversity, especially since it may affect the robustness of the 

population (Kawulok & Kawulok, 2022). 

What Factors Lead to Premature Convergence? 

From the previous studies (Cheng et al., 2015) of genetic algorithms and premature convergence, the 

researcher summarized the main causes that lead to premature convergence, which will be listed as 

follows: 

• Self-Adaptive Mutations 

Self-adaptive mutations were proposed by Rechenberg. Its main concept is using evolution strategies 

for self-adaptation in the mutation distributions. In other words, the parameters used to control the 

mutation distributions use self-adaptation evolution instead of using predetermined parameters (Gliesch 

et al., 2017). This new technique is called the “1/5-success rule of evolution strategies (1 + 1)-ES.”  The 

control parameter for the mutation step size will be increased based on some factors related to the ratio 

of positive mutations to the total number of mutations (Yu et al., 2009). If the ratio is greater than 1/5 in 

a specific period of time, then the control parameter for the step size will be increased, and if the ratio is 

less than 1/5, then the control parameter will be decreased (Kawulok & Kawulok, 2022). Self-adaptive 

mutation is considered one of the main causes for the occurrence of premature convergence. 

• Panmictic (unstructured) Populations 

Most evolutionary algorithms, especially genetic algorithms, start with an initial panmictic or 

unstructured population of chromosomes, where every chromosome is eligible to be selected as a 

candidate parent to mate and recombine to produce offspring based on their fitness value (Gliesch et al., 

2017). This means that the chromosomes with high fitness values can spread their features to the 

produced populations in many generations. The produced generations will not be better than the previous 

generations. This leads to a loss in population diversity, especially in small populations, and to premature 

convergence as a consequence (Cui et al., 2018). One of the countermeasures that could be used to 

preserve population diversity is switching to new models of populations, which means introducing 

substructures into the initial population. This technique can preserve population diversity over a longer 

time and a higher number of generations (Kawulok & Kawulok, 2022). 

• Premature Convergence Occurrence Avoidance Approaches 

Previous studies showed that many approaches have been proposed to regain population variation. 

Each strategy targeted one of the GA phases; some of them are related to parents who will be mated and 

recombined (mating strategy), and some researchers call it incest prevention. Another kind of approach 

is related to the crossover operator, and it is called uniform crossover. There are also some strategies 

dealing with the population itself before selection, and it depends on the idea of sorting the population 

by their similarity and making replacements of the individuals. This strategy is called (crowding or 

preselection). Some approaches use segmentation based on fitness values in the population by grouping 
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individuals having similar fitness values into one segment. This strategy is called (fitness sharing). While 

there are approaches targeting the population size to avoid premature convergence by increasing the size 

of the population in order to maintain high diversity in the population features (Segura et al., 2013). In 

addition to the mentioned approaches, premature convergence risk can be minimized by using structured 

populations instead of (unstructured) panmictic populations (Bi et al., 2022). Finally, there are 

approaches called dynamic reproduction operators that target the genetic algorithm crossover and 

mutation operators by forcing their values to be dynamic, not fixed, depending on the offspring fitness 

values. This research will modify the standard binary genetic algorithm by applying a modification to 

the mutation operator using a dynamic value for the mutation probability. The mutation phase can play 

an important role in preventing premature convergence by regaining genetic variation through applying 

the process in a highly random way (Dadgar et al., 2017). 

The Proposed Dynamic Mutation Operator 

In this section, the researcher will explore the enhancements that were proposed to the mutation genetic 

operator in the standard genetic algorithm. Let’s start by writing down the steps that are applied in the 

standard GA process: 

• Population initialization: Initialize a number of candidate solutions presented as chromosomes. 2- 

Set stopping criteria: Setting the stopping criteria means defining the criteria that must be checked 

at the end of each iteration. Some of these criteria are the maximum number of iterations 

(generations), reaching the predefined goal value, or reaching population convergence. Population 

convergence means that there are no improvements in the offspring (newly produced generation) 

fitness value.  

• Set crossover values: There are two main values that must be set in this step: the first one is the 

probability for selection, and the second value is related to the crossover points, which clarify at 

which points the traits (value of genes) will be exchanged if the crossover happens. 

• Set mutation value: This step is very important because it has the main role of changing the gene 

values and, in some cases, adding new values not inherited from parents. The mutation value can 

be defined as the probability of mutation. The mutation operator will be applied to each gene in the 

chromosome. For each gene, there will be a comparison between a random number and the mutation 

probability. If the random number is less than the probability of mutation, the mutation will occur; 

otherwise, the gene value will not be changed. To simplify the meaning of mutation in binary GA: 

if the mutation happens, the value of 1 will be changed to 0, and if the value is 0, it will be changed 

to 1.  

• Fitness value (score) calculation: This step is done by applying the chromosome value in the 

function being optimized and finding out the fitness value for each chromosome.  

• Calculate the selection probability: This can be done in different ways, but the most common way 

is to divide the fitness score for each chromosome by the summation of fitness scores in the 

population.  

• Apply the selection operator to the population and select parental solutions.  

• Apply the crossover operator to produce offspring.  

• Apply the mutation value to produce the modified offspring if any of their genes are affected by the 

mutation probability.  

• Offspring fitness value: After producing the new generation, the fitness scores must be calculated 

again and compared with the previous fitness scores for the parental candidate solutions. 11- 

Checking the predefined stopping conditions: If any of the predefined stopping conditions are met, 

the algorithm will stop and return the final value.  
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• 12- If not reaching any of the stopping conditions, go back to step five and apply the genetic 

operators to the newly produced offspring to produce a new generation. The process of the standard 

GA is displayed in Figure 2. 

 

Figure 2: Standard GA process 

After displaying the standard GA process and as the flowchart shows, the algorithm will stop running 

after checking the stopping criteria for each iteration. All the stopping criteria are checked in one step. 

In simple words, if any of the stopping criteria (conditions) are met, the algorithm will stop and return 
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population convergence. Stopping the algorithm as a consequence of reaching the maximum number of 
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The researcher has proposed a modification to the standard GA algorithm to overcome the premature 

occurrence, which happened as a consequence of the inability of the algorithm to generate a new 

population with higher fitness values or scores, with no improvements to the new offspring. To overcome 

this problem, two main modifications were added to the standard GA. The first one is to divide the 

checking points for stopping the algorithm into two separate points. The first checking point is to check 

the predefined maximum number of iterations and the predefined goal. If any of them is reached, the 

algorithm will return the solution. While the second checking point is to check population convergence, 

in this checking point, the algorithm must decide if the convergence occurred with a satisfied solution 

or if it happened very early. If the population converged very early, the algorithm reached premature 

convergence because the population lost its diversity and the genetic operators are unable to produce 

improved offspring. The second modification proposed by the researcher to overcome the problem of 

losing the diversity in the population is to force the algorithm to add new features and traits to the 

population using a dynamic mutation operator instead of using a fixed probability of mutation. The 

researcher’s suggestion is to increase the probability of the preset value of mutation probability. To 

specify the optimal value of mutation probability, the researcher conducted a number of experiments 

with different population sizes and different mutation probabilities and found that the best modification 

for any preset mutation probability is to multiply the value by two. The increase in the mutation 

probability will ensure that more genes in the offspring will be affected by the mutation operator, leading 

to the addition of new features and traits to the population, especially in binary GA. The conducted 

experiments will be displayed in the next sections of this research. The proposed enhancement and 

modifications to the GA process will be presented in the following steps and flowchart: 

• Population initialization: Initialize a number of candidate solutions presented as chromosomes. 

• Set stopping criteria: Setting the stopping criteria means defining the criteria that must be checked 

at the end of each iteration. Some of these criteria are the maximum number of iterations 

(generations), reaching the predefined goal value, or reaching population convergence. Population 

convergence means that there are no improvements in the offspring (newly produced generation) 

fitness value. 

• Set crossover values: There are two main values that must be set in this step: the first one is the 

probability for selection, and the second value is related to the crossover points, which clarify at 

which points the traits (value of genes) will be exchanged if the crossover happens. 

• Set mutation value: This step is very important because it has the main role of changing the gene 

values and, in some cases, adding new values not inherited from the parent. The mutation value can 

be defined as the probability of mutation. The mutation operator will be applied to each gene in the 

chromosome. For each gene, there will be a comparison between a random number and the mutation 

probability. If the random number is less than the probability of mutation, the mutation will occur; 

otherwise, the gene value will not be changed. To simplify the meaning of mutation in binary GA: 

if the mutation happens, the value of 1 will be changed to 0, and if the value is 0, it will be changed 

to 1.  

• Fitness value (score) calculation: This step is done by applying the chromosome value in the 

function being optimized and finding out the fitness value for each chromosome.  

• Calculate the selection probability: This can be done in different ways, but the most common way 

is to divide the fitness score for each chromosome by the summation of fitness scores in the 

population.  

• Apply selection operator to population and select parental solutions.  

• Apply crossover operator to produce offspring.  
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• Apply mutation value to produce the modified offspring if any of their genes are affected by the 

mutation probability.  

• Offspring fitness value: After producing the new generation, the fitness scores must be calculated 

again and compared with the previous fitness scores for the parental candidate solutions.  

• Check population convergence: In this case, if the algorithm returns an acceptable solution, then 

stop; otherwise, go back to step 4 and modify the mutation value by multiplying it by two. 

• Check the other two stopping conditions: the max number of iterations or reaching the predefined 

goal value. If any of them are met, the algorithm will stop and return the final value. 

• If none of the stopping conditions are met, go back to step five and apply the genetic operators to 

the newly produced offspring to produce a new generation. The process of the standard GA is 

displayed in Figure 3. 

 

Figure 3: The Proposed Dynamic Mutation Operator GA Process  
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3 Research Methodology 

Conducting experiments is the methodology which was applied by the researcher to show the results 

achieved after applying the enhanced standard genetic algorithm (modifying the mutation probability if 

the algorithm stuck because of convergence occurrence). Three different experiments were conducted 

to find the best solution for   x2 function. The first experiment with n=20 for the population size, the 

second experiment with n=40, while the third one with n=100 for the population size. In each experiment 

five different mutation probabilities were applied to compare the results of the calculated fitness function 

to find out if there is an improvement of results for the x2 function being optimized. 100 generations 

were produced by applying 10,000 iterations in each experiment, binary genetic algorithm was used for 

running iterations using 16 bits to represent the candidate solution into 16-bit chromosomes lengths, the 

probability of cross over genetic operator was set to 0.3 while the probability of mutation genetic 

operator was set to 0.03, then multiply the mutation probability by 2, 4,6,8 and 10 respectively. Finally, 

the researcher uses random seed for the purpose of generating random number which used in the 

reproduction phase (selection, crossover and mutation). The experiments details are summarized in table 

(1). 

Table 1: The conducted experiment details 

Size of 

population 

 

Number of 

applied 

iterations 

Optimizing the 

maximization of x2 

function 

Chromosomes 

length 

Crossover 

probability 

Mutation 

probability  

Fitness  

N=20 10000  x2 16 bits 0.3 0.03 

0.03*2 

0.03*4 

0.03*6 

0.03*10 

Fitness scores 

average 

N=40 10000  x2 16 bits 0.3 0.03 

0.03*2 

0.03*4 

0.03*6 

0.03*10 

Fitness scores 

average 

N=100 10000  x2 16 bit  0.3 0.03 

0.03*2 

0.03*4 

0.03*6 

0.03*10 

Fitness scores 

average 

4 Results and Discussion 

After conducting the experiments using different sizes of population with fixed value of mutation, the 

obtained solutions using standard genetic algorithm were kept to compare them later with the solutions 

which will be obtained using the modified genetic algorithm by applying the dynamic genetic mutation 

operators. After that the researcher had conducting the same experiments with same population sizes 

with different values of mutations probabilities, the different values of the mutation probability were 

obtained as a value of multiplying the mutation probability by 2, 4,6 and 10 respectively. The Genetic 

algorithm performance depending on the fitness scores were represented in figure 4, figure 5 and figure 

6. The lines different colors in the figures represents the performance regarding value of mutation 

probability, where the orange line represent the performance using standard GA with fixed value of 

mutation probability, light blue with the value of mutation probability multiplied by 2, gray with the 

value of mutation probability multiplied by 4, yellow with the value of mutation probability multiplied 

by 6 and finally dark blue with the value of mutation probability multiplied by 10. The conducted 

experiments generated 100 generation after applying 10000 iterations       
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Figure 4: Performance Results for Population Size =20 

 

Figure 5: Performance Results for Population Size =40 

 

Figure 6: Performance Results for Population Size =100 

As shown in figures 4,5 and 6, there were improvements in fitness scores which improved the 

performance of genetic algorithm for the produced generations(offspring). Applying a dynamic value of 
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genetic mutation operators played a major role in that performance improvements. The second main 

result which was concluded from the experiments shows that the best performance was after applying 

the value of mutation multiplied by two. The enhancement which was proposed by the researcher if the 

standard GA reaches the premature convergence is to set a new value for the predefined mutation 

probability by multiply it by two. 

5 Conclusion 

In this research the researcher has presented the standard genetic algorithm as one type of evolutionary 

algorithms describing its importance and different applications, then the genetic algorithm process was 

explained in details showing the different phases and genetic operators which applied to initial 

population to produce offspring. The stopping conditions of GA was mentioned in this research. One of 

the stopping conditions for GA is reaching population convergence. An explanation of convergence and 

premature convergence were presented showing the causes that lead to premature convergence 

occurrence. The main cause for premature convergence is the absence of population diversity which 

means that all the chromosomes in the population almost the same and as a consequence the GA will be 

unable to produce better offspring or better generations. Then the researcher has presented the 

importance of mutation genetic operator and its ability to maintain the population diversity because it is 

the only genetic operator which can add new values or traits to the chromosomes by changing its gene 

values especially in binary GA. Mutation operator is vital in maintaining the population diversity, the 

researcher proposed an enhancement to standard GA regarding mutation operator. The modification 

which was proposed by researcher is forcing the standard GA to check population convergence after 

each iteration, if population convergence was reached the algorithm evaluates the result obtained, if the 

result is acceptable then stop and return back the result, but if the result is not acceptable then change 

the predefined mutation probability value by multiplying it by two then apply the new mutation operator 

to offspring.   These enhancements were presented as steps and flow chart. Number of experiments was 

conducted by the researcher to find out the best way to apply the dynamic mutation probability value, 

the results showed that the best improvements for population and produced generations is changing 

mutation probability value by multiply it by two.  

As a conclusion an adaptive mutation probability technique when applied to standard GA achieved 

improvements in its performance by increasing fitness values and scores in the new produced population 

and prevent the occurrence of premature population convergence by maintaining population diversity.   
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