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Abstract 

In the Pharmaceutical and Healthcare industries, understanding medications is key in the treatment 

of patients. Worldwide, there are hundreds of thousands of medications available, classified in 

categories related to medication therapy and the remediation that they provide. With so many 

different types of medication, medical doctors and pharmacists need to determine what kinds of 

drugs to provide to patients with specific medical needs. New medication studies necessitate careful 

analysis of available medication data during clinical trials, prior to production of new medications, 

and through the course of prescribed medication therapy. he use of medication therapy is not justified 

if the number of side effects outweighs the remedial benefits. Therefore, not all medications are 

deemed medically safe for all patients. Supervised machine learning techniques assist scientists with 

predicting side effects of medications that are under development. Prediction techniques aid future 

development of medications based on the properties of current medication data models. 

Keywords: Machine Learning, Side Effect Prediction, Pharmaceutical Industry, SIDER Database, 

Medication Therapy, Clinical Trials, Drug Safety, Supervised Learning 

1 Introduction 

Medication side effects are unintended reactions a drug may exhibit on the body during medication 

therapy. While some of these reactions can be positive or neutral, many drugs have undesirable and 

adverse side effects which can range from mild inconveniences, such as a headache or dry mouth, to 
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life-threatening, such as blood clots and organ damage. When prescribing medications, a healthcare 

provider must take into consideration the patient’s health and if the patient is able to tolerate adverse 

side effects based on their specific health conditions. A drug that has a significant amount of side effects 

where the risks outweigh the benefits will be deemed dangerous and potentially fatal if consumed. (FDA, 

n.d.). 

New medications undergo a development process before they are ready for production. During this 

time, the medication is researched and tested on people and animals in the laboratory, commonly referred 

to as a clinical trial. During the clinical trial process, scientists measure and record medication efficacy 

and any side effects exhibited by the test subject. If a clinically trialed medication is deemed safe, the 

FDA will further review, test, and monitor the drug during production. It could take up to 15 years before 

a medication passes through the clinical trial process (Cancer Research UK, 2022). 

Supervised machine learning is a tool data scientists utilize for training data and expediting the 

clinical trial process. In pharmaceutical and health studies, scientists employ historical and current 

medication data models for analysis and computation. By training the data model through supervised 

inputs and outputs, a scientist can successfully train a dataset to predict a series of well-defined side 

effect trends. Specifically, medication data models are available for predicting the side effects of drugs 

undergoing clinical trials. This insight allows data scientists to reduce the time it takes to research and 

analyze medications for clinical trials, thus expediting the time needed for medication development. 

2 Problem Statement and Related Work 

The clinical trial period prior to production and manufacturing of new medications can take up to 10 to 

15 years to be approved via clinical trial. During clinical trials, humans and animals participate in studies 

that measure drug efficacy and emergent side effects. Machine learning is used to predict side effects for 

research medications during the production period. A data set of clinically trialed medications containing 

their known side effects, in conjunction with medication anatomical, therapeutic, and chemical 

compositional (ATC) data, is used to form a data model. This model is instrumental in the analysis of 

frequently appearing side effects of drugs and correlations of side effects with other medication 

attributes. The model can be trained to predict side effects and ATC trends in future clinical trials. 

In the journal “An extensive survey on the use of supervised machine learning techniques in the past 

two decades for prediction of drug side effects,” the study was aimed to analyze a variety of different 

observations across multiple medication side effect studies (Das & Mazumder, 2023). The study 

illustrates how a supervised machine learning approach can predict medication side effects with the use 

of known medication attribute data. Being able to predict side effects can reduce some of the challenges 

scientists and drug manufacturers face when analyzing and developing new medications. Despite these 

findings, the study mentions that there are still complexities when using this type of approach to 

predicting new medication side effects. Only some attribute pairs can successfully be used to identify 

side effects. Another issue is that not all medications have side effects. Out of the data that was examined, 

the number of medications without side effects outweighs the number of medications that have side 

effects. Future studies in this area may use clustering methods in conjunction with supervised machine 

learning to appropriately classify medications before assigning side effect labels. 

In the journal “Machine learning prediction of side effects for drugs in clinical trials,” the study aimed 

to predict unknown side effects in clinical trials using information available in the SIDER and 

OFFSIDES database (Galeano & Paccanaro, 2022). The Side Effect Resource database or SIDER 

contains drug-side effect pair data observed in clinical trial studies. The OFFSIDES database contains 
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aftermarket side effect pair data.  The study’s authors manufactured the “Geometric Self-Expressive 

Model” (GSEM), which uses matrices containing medication and side effect data to train the model with 

the utilization of known drug-side effect pairs of these databases. The study further details how drug-

side effect pair data from clinical trial and aftermarket studies can be used to predict trends in future 

clinical trials and when new medications enter the market. 

3 Methodology and Data 

The following approach will be taken throughout the course of this study: 

1 Clean and preprocess the SIDER database dataset. 

2 Clean and preprocess ATC data for merging with SIDER data. 

3 Organize the data into two matrices: a Drugs x Drugs matrix (matrix H) and a Side Effects x Side 

Effects matrix (matrix X)  

4 Employ the GSEM model to create matrix Xb such that: HX + XW = Xb, where Xb = Drugs x Side 

effects + Side effects x Drugs. 

5 Identify testing and training sets of well-defined data based on drug-side effect pairs in the Xb matrix 

and a side effect representation_threshold of 0.05 by using Random Forests (RF), Linear Regression 

(LR), and Support Vector Machine (SVM) with Python’s Scikit-Learn / “Sklearn” library. 

6 Train the data by comparing the test set’s side effects with results from the training set with each 

model. 

7 Record the number of trained side effects, Random Forest Area Under Receiver Operating 

Characteristic (AUROC) scores, Linear Regression R-Squared scores, and Support Vector Machine 

Accuracy scores. 

8 Execute and compare precision, recall, and F1 unit tests for each model. 

9 Plot the Side effect ratio reporting frequency for each model. 

10 Plot and compare AUROC curves, Precision-Recall curves, confusion matrices, AUROC score 

distributions, and Linear regression scatter plots for each model.  

11 Fit the trained data to the Support Vector Machine Classifier Model. 

12 Test the dataset in segments with K-Fold Cross-Validation to measure prediction relationships 

between each fold and each model. Display the results and metrics of each fold, as well as the top 8 

important side effect features. 

13 Illustrate Anatomical Therapeutic Chemical (ATC) classification relationships of each model’s 

results with the use of box and whisker plots. 

The SIDER Side Effect Resource database was converted to a dataset. The database is available from 

http://sideeffects.embl.de/ (Letunic, n.d.). The database contains over 5,800 unique side effects, over 

1,400 unique medications, and over 139,000 drug-side effect pairs. SIDER data is parsed from.gz files 

into three segments for further analysis: data containing information pertaining to side effect frequency, 

data illustrating every side effect for each available medication, and an indications data segment that 

describes valid reasons to use each medication (Dhimmel, n.d.). This study primarily focuses on the side 

effect data segment, described here as the “se_df” data frame, for analysis. 

http://sideeffects.embl.de/
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Each record in the “se_df” data frame contains four columns. The “drugbank_id” column contains 

the ID of the medication in the DrugBank database. The “drugbank_name” column represents the name 

of the medication as it appears in the DrugBank database. The “umis_cui_from_meddra” column 

contains the ID of the medication in the Medical Dictionary for Regulatory Activities. The 

“side_effect_name” column contains a side effect for each medication record. Medications with multiple 

side effects contain several or more separate records each indicating a unique side effect. In total, “se_df” 

contains over 153,000 unique records. 

The Anatomical Therapeutic Chemical (ATC) classification system categorizes medications into 

pharmacological groups (World Health Organization, n.d.). The ATC structure consists of five levels. A 

unique code is assigned to each medication. The code can be used to identify each of the five ATC levels 

pertaining to an individual medication or substance. The first level contains fourteen distinct anatomical 

or pharmacological groups. The second level breaks the medication down further into a therapeutic or 

pharmacologic group. Third and fourth levels further define chemical, pharmacologic, or therapeutic 

subgroups for the medication. The fifth level consists of the medication’s chemical substance                        

(or medication’s name.) Table 1 illustrates ATC classification: 

Table 1: Structure and Representation of ATC Codes 

Structure of ATC Code Level Representation 

C Cardiovascular System (1st level, anatomical main group) 

C10 Lipid Modifying Agents (2nd level, therapeutic subgroup) 

C10A Lipid Modifying Agents, plain (3rd level, pharmacological subgroup) 

C10AA HMG CoA reductase inhibitors (4th level, chemical subgroup) 

C10AA05 Lipitor (5th level, chemical substance) 

A .csv file containing scraped ATC classification information was sourced from Github and utilized 

for parsing medication side effects to their appropriate ATC classifications (Fabkury, n.d.). This .csv file 

contained six columns and over 6,900 rows of ATC records. The “atc_code” column contains the ATC 

code for a particular medication. The “atc_name” column contains the name of the appropriate ATC 

level or name of the chemical substance. The final four columns “ddd,” “uom,” “adm_r,” and “note” 

contain information pertaining to the medication’s defined daily dose, unit of measurement, 

administration route, and notes respectively. The information from the final four columns contains 

mostly null values and is not utilized. 

This study primarily focuses on medications and their side effect attributes in conjunction with 

machine learning models for side effects prediction in clinical trial settings. Each drug-side effect data 

point is categorical and must be encoded prior to analyzation and algorithmic computation. ATC 

classification data is utilized for visualizing data performance and results of the study. 

Analysis 

This study aims to utilize Python, Pandas, and other tools to accomplish the following objectives: 

1 Reproduce the “Geometric Self-Expressive Model” (GSEM) and analyze results across various 

machine learning algorithmic models. 

2 Identify a training set of well-defined side effects across three different machine learning models: 

Random Forests, Linear Regression, and Support Vector Machine. 

3 Evaluate and compare each model’s accuracy rates in the prediction of side effect observations. 

4 Illustrate findings with charts and graphs for each model. 
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5 Utilize K-Fold Cross-Validation to measure the accuracy of each model’s performance across k equal 

splits. 

6 Apply results to Anatomical Therapeutic Chemical (ATC) classifications and illustrate and compare 

findings using graphs. 

7 Detail the economic usefulness of the study’s findings. 

Parsing SIDER Database Information to Pandas Data Frames 

The information available in the SIDER database is freely able for download as .gz files. The information 

must be parsed as data frames prior to Python utilization and analysis. The resulting “se_df” side effects 

data frame is utilized in the subsequent preprocessing procedures (Dhimmel, n.d.). 

Combining the Side Effects Data Frame with Parsed Anatomic, Therapeutic, Chemical (ATC) 

Classification Codes 

A scraped ATC classification .csv file, (atc.csv,) sourced from Github, suppliments ATC data for parsing 

to a data frame (Fabkury, n.d.). The side effects data frame and ATC data frame can be combined with a 

merge operation.  

Each medication name from the side effects data frame must exactly match each medication name in 

the ATC data frame. To accomplish this: 

1 A new column is created within both the side effects and ATC data frames. The column is initialized to 

the lower-cased medication or ATC name of each respective data frame. 

2 The ATC data frame may contain some duplicates. These records are cleaned such that there is only one 

unique ATC name for each ATC code. 

3 The indices of each data frame are reset. (This step is pertinent to a successful merge when using Python 

Pandas.) 

4 The data from each data frame is merged to create a new data frame. This data frame consists of the 

side effect data frame with an additional ATC code column containing the ATC code for each 

medication.  

Combining Resulting Data Frame with ATC Classification Levels 

Additional operations must be performed to merge ATC level names with this new data frame: 

1 A new data frame is initialized. 

2 One by one, new columns are constructed to represent each ATC level of a record in the data frame. 

3 One by one, the ATC code for each record is merged with the ATC name corresponding to the exact 

ATC code match from the ATC data frame. 

4 The indices are reset for the next merge operation. 

Incorporating the GSEM Model, Learning Similarity Matrices, and Creating a Combined “Drugs 

x Side Effects” Matrix 

The Generalized Self Representation Model (GSEM) can be used in drug side effect predictions 

(Galeano & Paccanaro, 2022). Here the GSEM model is observed and applied to predict the side effects 

of medications under development.  
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The GSEM model integrates drug and side effect information by learning two binary similarity 

matrices. Similarity matrix H is a matrix consisting of Drugs x Drugs. Similarity matrix W consists of 

Side Effects x Side effects. The dimensions of each matrix are equal to the number of unique drugs and 

unique side effects in the data set respectively. The model generates scores for each side effect pair using 

the equation: 

𝑋𝑏 = 𝐻𝑋 + 𝑋𝑊 (Equation 1) 

To learn W and H, the following objective functions are minimized: 

 

𝑚𝑖𝑛𝑊
1
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Where ||.||F denotes the Frobenius norm, and the terms 
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2  represent smoothness, and terms 𝛾𝑇𝑟(𝑊) , 𝛾𝑇𝑟(𝐻) represent diagonal penalties. 

The Xb matrix, illustrated in Figure 1, is built by applying the GSEM model to the dataset. Any non-

binary elements in the Xb matrix are converted to binary integers. A heatmap of the Xb matrix can be 

observed to ensure correct mappings of medications to side effects. The heatmap will also ensure that 

all elements in Xb are binary. The resulting Xb matrix will be fully encoded and ready for processing. 

  

Figure 1: Heatmap of the Xb Matrix Representing Drugs Presenting Side Effects 
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4 Machine Learning Model Development and Analysis 

Scikit-learn combines multiple Python libraries and provides tools for data classification, regression, 

clustering, dimensionality reduction, model selection, and preprocessing (Learn, n.d.). Scikit-learn’s 

RandomForestClassifier, LinearRegression, and Support Vector Machine (SVC) toolsets are used for 

machine learning model exploration and evaluation. Additional python libraries, such as matplotlib, 

seaborn, and numpy, are used in conjunction with Scikit-learn for analyzing and visualizing the results 

of trained data. 

Support Vector Machine is a supervised learning algorithm that can aid in machine learning. It 

provides ways to analyze data for regression and classification tasks. SVM’s primary classification task 

involves finding an optimal hyperplane between correlating variable data points. A prevalent hyperplane 

can be used for prediction tasks against trained data. 

Linear Regression is a statistical model that is used in regression analysis. Like Support Vector 

Machine, Linear Regression also analyzes relationships between data points. A linear regression line can 

be used to show the correlation between attributes and features. This type of analysis could indicate a 

positive or negative correlation, which can provide insight in machine learning prediction tasks. 

The Random Forests model takes an ensemble approach for machine learning tasks. It uses multiple 

learning algorithms for analyzing data. Training data with Random Forests involves constructing a series 

of decision trees. Random Forests analyzes and prioritizes results with the greatest number of trees. 

Statistical calculations can be performed to find the most meaningful or influential data points trained 

by the model.   

Sklearn’s “train_test_split()” is a function that extends sklearn’s API. It accepts arrays or matrices, 

(x and y,) and returns a split of testing and training data. Additionally, train_test_split() accepts 

parameters: test_size, (percentage of the data to be split in the test set,) train_size, (percentage of the 

data to be split in the train set,) random_state, (a given integer value will result in a repeatable outcome,) 

shuffle, (a Boolean value that, if true, will shuffle the dataset before preforming the split,) and stratify, 

(retain class labels for a given matrix or array.)  

X is defined as the source feature and y is defined as the target feature, such that: The x variable will 

contain a list of medications presenting side effects and the y variable will contain a column representing 

a series of clinically presented side effects. The side effects column is filtered with a threshold to filter 

out any side effect that isn’t presenting by 0.05 (or 5%) of medications.  

Testing and training then occurs by looping through each side effect, utilizing Scikit-learn’s 

train_test_split() function on every medication for each side effect. Data is split into 80% training, 10% 

validation, and 10% testing segments. Test train pairs are then passed to each machine learning model: 

Random Forest, Linear Regression, and Support Vector Machine.  

5 Results 

Results for these models are analyzed and compared, including the number of trained side effects, area 

under receiver operating characteristic (AUROC) scores, r-squared scores, and accuracy scores. Figure 

2 illustrates comparisons of Precision, recall, and F1 unit tests for the side effects of diarrhea. Precision 

indicates the accuracy of positive predictions. Recall indicates the completeness of the predictions. F1 

combines both precision and recall into one score. Figure 3 demonstrates recall and precision 

performance on a precision-recall curve. A high area under the precision-recall curve indicates low false 

positive rates and low false negative rates for side effect prediction tasks. 
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Figure 2: Model Evaluation and Corresponding Precision, Recall, and F1 scores for a Selected Side 

Effect, Diarrhea 

 

Figure 3: Precision-Recall Curve Representation for RF, LR, and SVM Models 

Ratio of Reporting Frequencies 

The Ratio of Reporting Frequency (RRF) is a normalized count of medications that are associated with 

a given side effect. The smaller the RRF, the less medications are associated with a given side effect. 

Higher RRF represents side effects that are associated with many drugs. RRF was measured and 

compared between each observed machine learning model. Figures 4 through 6 show the RRF when 

compared against Random Forest’s AUROC scores, Linear Regression’s R-squared scores, and Support 

Vector Machine’s accuracy scores respectively.  
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Figure 4: RRF Compared against Random Forest’s AUROC Scores 

 

Figure 5: RRF Compared against Linear Regression’s R-squared Scores 
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Figure 6: RRF Compared against Support Vector Machine’s Accuracy Scores 

Receiver Operating Characteristics (ROC) Curves 

ROC curves measure and plot the true positive rate against the false positive rate. The true positive rate 

(TPR) also known as “sensitivity” or “recall” is the ratio of correctly predicted positive observations to 

actual positive values. The false positive rate (FPR) is the ratio of incorrectly predicted positive 

observations to actual negatives. Formulas for TPR and FPR are described below: 

𝑇𝑃𝑅 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠)
       𝐹𝑃𝑅 =

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

(𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠)
 

A ROC curve along the diagonal line with a slope of m = 1 represents a random classifier. Lines 

along the random classifier represent a trait that is no better than random guessing. Lines above the 

classifier represent good performance with prediction tasks and coincide with higher TPR for lower 

FPR. Figure 7 shows ROC curves for Random Forest, Linear Regression, and SVM models for the 

selected side effect coagulopathy. Figure 8 shows the distribution of AUROC scores for each model 

across all trained side effects. 
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Figure 7: ROC Curves for each Machine Learning Model against the Side Effect, Coagulopathy 

 

Figure 8: The Distribution of All Side Effect ROC Scores for each Model 
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Confusion Matrices 

A confusion matrix is a table that illustrates a side effect’s True Negative, True Positive, False Negative, 

and False Positive predictions, where: 

• True Negative represents the accurate predicted absence rate of a side effect 

• True Positive represents the accurate predicted presence of a side effect 

• False Negative incorrectly predicts the absence of a side effect when it is present 

• False Positive incorrectly predicts the presence of a side effect when it is not present 

 

Table 2 shows a textual representation of a confusion matrix. 

Table 2: Structural Representation of a Confusion Matrix 

 Predicted Negative (0) Predicted Positive (1) 

Actual Negative (0) True Negative (TN) False Positive (FP) 

Actual Positive (1) False Negative (FN) True Positive (TP) 

 
Figures 9, 10, and 11 present confusion matrices for the thrombocytopenia side effect. Figure 9 shows 

a confusion matrix generated with Random Forest model predictions, Figure 10 shows a confusion 

matrix generated with Linear Regression model predictions, and Figure 12 shows a confusion matrix 

generated with Support Vector Machine model predictions.  

 

Figure 9: Random Forest Confusion Matrix Predictions for the Thrombocytopenia Side Effect 
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Figure 10: Linear Regression Confusion Matrix Predictions for the Thrombocytopenia Side Effect 

 

Figure 11: Support Vector Machine Confusion Matrix Predictions for the Thrombocytopenia Side 

Effect 

Linear Regression Scatter Plots 

Each data point on the linear regression scatter plot represents either the absence or presence of a side 

effect. A positive slope indicates positive correlation between actual and predicted values. The closer the 

linear regression line is to the slope, where m = 1, the more accurate the model is at predicting the 

absence or presence of side effects. Figure 12 illustrates a linear regression scatter plot for the side effect 

anaphylactic shock. Figure 13 illustrates a linear regression scatter plot across all side effects. 
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Figure 12: Linear Regression Scatter Plot for Anaphylactic Shock 

 

Figure 13: Linear Regression Scatter Plot for All Side Effects 

K-fold Cross-Validation Metrics 

K-fold cross-validation breaks the data set into k equal segments. Each model uses testing and training 

parts from each of the k segments in a new testing and training set. This ensures that each model works 

accurately by testing it against different subsets of the data set. K is set to five separate folds. Each model 

is looped k times.  
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Figure 14: Prediction Results for each Model for each Fold 

Figure 15: Accuracy, precision, recall, F1, mean absolute error, and r-squared metric evaluation and 

comparison. 

Figure 14 shows a line graph representing prediction results for each model across five folds. Figure 

15 presents results for accuracy, precision, recall, f1, mean absolute error, and r-squared metric 

evaluation for each model across five folds. 

Side effect coefficients are observed for each model. For Random Forests, higher values indicate the 

side effect is influential in prediction evaluation. For Linear Regression, positive coefficients indicate 

that as the weight of the side effect increases, the stronger the relationship between the side effect and 

the predicted target value. The reverse is true for negative coefficients. For Support Vector Machine, like 

Linear Regression, positive and negative coefficients represent the influence of a side effect against the 

decision-making boundary. Figure 16 shows the eight most prevalent feature coefficients for each model 

for each fold. 
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Figure 16: The Eight Most Prevalent Feature Coefficients for each Fold for each Model 

Anatomic Therapeutic Chemical (ATC) Classification Box and Whisker Plots 

ATC box and whisker plots visualize performance statistics for each model’s minimum, first quartile, 

median, third quartile, and maximum result values. This set of graphs can be utilized to show how 

accurate machine learning model prediction could be used in clinical trial settings with respect to 

medications of a particular ATC classification. Results can be applied to all levels of ATC classification. 

The following graphs demonstrate ATC first level classification results for Random Forests, Linear 

Regression, and SVM models. Figures 17 through 19 show performance distributions of first level ATC 

classification across Random Forest, Linear Regression, and Support Vector Machine models 

respectively. 

 

Figure 17: Random Forest Performance by First-level ATC Class 
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Figure 18: Linear Regression Performance by First-level ATC Class 

 

Figure 19: Support Vector Machine Performance by First-level ATC Class 

6 Discussion and Conclusion 

This study aimed to evaluate data that was available in clinical trial scenarios. Many medications that 

do not present side effect data are filtered via a threshold. More data would likely improve machine 

learning model performance. 

Sometimes side effects that weren’t presented in clinical trial settings will manifest in medication 

therapy postproduction. Maintainers of the OFFSIDES database record and store side effects presenting 

in medications currently on the market (Galeano, Paccanaro, 2022). There are upsides and downsides to 

using this type of data in clinical trials. One potential upside would be having access to more data for 

model training. However, depending on the drug manufacturer, different additive fillers could be used 

during medication production. If a patient is sensitive to an additive and exhibits side effects, it may not 
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necessarily be the medication chemical composition at fault. This could prove to be a downside to using 

aftermarket data in machine learning analysis.  

Medication therapy is integral to the healthcare industry. Healthcare professionals rely on 

pharmaceuticals to provide patients with adequate care and to assist with medical necessities. The 

medication development process can take many years before a new medication is ready for production.  

As an analytical tool, machine learning has the potential to facilitate shorter testing periods with more 

concise results for scientists and health care professionals. 

Sci-kit Learn is a Python library that contains powerful tools for data analysis and machine learning. 

Sci-kit Learn functions were leveraged throughout the course of this study. Random Forests, Linear 

Regression, and Support Vector machine Models were utilized in prediction tasks. Resulting metrics 

from each model were evaluated, compared, and graphed for visual representations. There are a myriad 

of methods that can be further explored to analyze future prediction tasks with machine learning.  

There are still many unexplored medication attribute pairs that could be conducive to predicting side 

effects. If machine learning can be used to predict side effect trends, scientists can minimize the need 

for test subjects in medication clinical trials. This can potentially lead to reduced animal and human 

testing and expediate the clinical trial process which will lead to faster and more efficient medication 

production. Ultimately, machine learning advances in healthcare and pharmaceuticals has the potential 

to save money, reduce lab trials on live specimens, conserve resources and, most importantly, lead to 

better quality of life and even help to save lives. 

References 

[1] Anatomical therapeutic chemical (ATC) classification, World Health Organization, 

https://www.who.int/tools/atc-ddd-toolkit/atc-classification/ 

[2] Center for Drug Evaluation and Research, Artificial Intelligence and machine learning for drug 

development, U.S. Food and Drug Administration, https://www.fda.gov/science-

research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-

aiml-drug-development 

[3] Center for Drug Evaluation and Research, Learning about side effects (adverse reactions), U.S. 

Food and Drug Administration, https://www.fda.gov/drugs/find-information-about-

drug/finding-and-learning-about-side-effects-adverse-

reactions#:~:text=Side%20effects%2C%20also%20known 

[4] Center for Drug Evaluation and Research, Using bayesian statistical approaches to advance our 

ability to evalua, U.S. Food and Drug Administration, https://www.fda.gov/drugs/cder-small-

business-industry-assistance-sbia/using-bayesian-statistical-approaches-advance-our-ability-

evaluate-drug-products 

[5] Das, P., & Mazumder, D. H. (2023). An extensive survey on the use of supervised machine 

learning techniques in the past two decades for prediction of drug side effects. Artificial 

Intelligence Review, 56(9), 9809-9836. 

[6] Data Society, Data Science’s innovation in pharmaceutical clinical trials, 

https://datasociety.com/data-science-for-pharmaceutical-trials 

[7] Dhimmel, GitHub, https://github.com/dhimmel/SIDER4/blob/master/SIDER4.ipynb 

[8] Fabkury, GitHub, https://github.com/fabkury/atcd/blob/master/WHO%20ATC-DDD%202021-

12-03.csv 

[9] Fukuto, K., Takagi, T., & Tian, Y. S. (2021). Predicting the side effects of drugs using matrix 

factorization on spontaneous reporting database. Scientific Reports, 11(1), 23942.  

[10] Galeano, D., & Paccanaro, A. (2022). Machine learning prediction of side effects for drugs in 

clinical trials. Cell Reports Methods, 2(12), 100358. 



Machine Learning Side Effect Trend Predictions and the SIDER 

Database 

                                         Jaichandran et al. 

 

108 

[11] Galeano, D., Li, S., Gerstein, M., & Paccanaro, A. (2020). Predicting the frequencies of drug 

side effects. Nature communications, 11(1), 4575. 

[12] How long a new drug takes to go through clinical trials, Cancer Research UK, 

https://www.cancerresearchuk.org/about-cancer/find-a-clinical-trial/how-clinical-trials-are-

planned-and-organised/how-long-it-takes-for-a-new-drug-to-go-through-clinical-

trials#:~:text=It%20might%20take%2010%20to 

[13] Huang, T., Lin, K. H., Machado-Vieira, R., Soares, J. C., Jiang, X., & Kim, Y. (2023). 

Explainable drug side effect prediction via biologically informed graph neural 

network. medRxiv. 

[14] Jahid, M. J., & Ruan, J. (2013). An ensemble approach for drug side effect prediction. In 2013 

IEEE international conference on bioinformatics and biomedicine, 440-445.  

[15] Kennedy, F., Shearsmith, L., Ayres, M., & et al. (2021). Online monitoring of patient self-

reported adverse events in early phase clinical trials: Views from patients, clinicians, and trial 

staff. Clinical Trials, 18(2), 168-179. 

[16] Kommu, S., & Carter, C. (2023). Adverse drug reactions. StatPearls.  

[17] Kuhn, M., Letunic, I., Jensen, L. J., & Bork, P. (2016). The SIDER database of drugs and side 

effects. Nucleic acids research, 44(D1), D1075-D1079. 

[18] Learn, scikit, https://scikit-learn.org/stable 

[19] Letunic, I. “Sider 4.1: Side Effect Resource,” SIDER Side Effect Resource, 

http://sideeffects.embl.de 

[20] Michael Bihari, M. (2024), Drug classes: Making sense of what medication classifications mean, 

Verywell Health, https://www.verywellhealth.com/drug-classes-

1123991#:~:text=From%20the%20broadest%20perspective%2C%20you,hundred%20classes

%20within%20those%20categories 

[21] Miller, M. I., Shih, L. C., & Kolachalama, V. B. (2023). Machine learning in clinical trials: A 

primer with applications to neurology. Neurotherapeutics, 20(4), 1066-1080. 

[22] Onitiu, D., Wachter, S., & Mittelstadt, B. (2024). How AI challenges the medical device 

regulation: patient safety, benefits, and intended uses. Journal of Law and the Biosciences, 

lsae007.  

[23] Routray, R., Tetarenko, N., Abu-Assal, C., Mockute, R., Assuncao, B., Chen, H., & Mingle, E. 

(2020). Application of augmented intelligence for pharmacovigilance case seriousness 

determination. Drug Safety, 43, 57-66. 

[24] The drug development process, U.S. Food and Drug Administration, 

https://www.fda.gov/patients/learn-about-drug-and-device-approvals/drug-development-

process 

[25] TLab, Data-Driven Drug Safety, https://tatonettilab.org/offsides 

[26] Tonoyan, L., & Siraki, A. G. (2024). Machine learning in toxicological sciences: opportunities 

for assessing drug toxicity. Frontiers in Drug Discovery, 4, 1336025. 

[27] Weissler, E. H., Naumann, T., Andersson, T., Ranganath, R., Elemento, O., Luo, Y., & Ghassemi, 

M. (2021). The role of machine learning in clinical research: transforming the future of evidence 

generation. Trials, 22, 1-15. 


