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Abstract 

This research addresses human vibration analysis, rule-based lift fault detection algorithm noise 

interference, and early fault diagnosis. A new network-based defect diagnosis system uses lift sensor 

acceleration and displacement data. Convolutional Neural Networks CNNs automatically extract 

features like motor current (average, maximum, lowest values during a recording session) from this 

fused data stream and sensor data. CNNs learn key features from pooled data to reduce noise and 

detect faults early. To build a baseline for normal operation, 132 vibration signal characteristics 

(RMS, peak-to-peak, mean, standard deviation), lift ID, timestamp, operating mode 

(Up/Down/Idle), and load condition (Empty/Low/Medium/High) data points are used. Regular 

operational data and 201 gearbox fault data points are collected. The problem affects motor 

behaviour via vibration signals, timestamps, lift data, and motor current values. Learning to 

distinguish this defect type from normal operational data allows the network-based technique 

identify it. Research shows that network-based strategies outperform traditional methods. It finds 

weaknesses better than before researches. This method automatically extracts features from the 

fused data stream to detect defects in real time. Displacement and acceleration data, motor current 

readings, and CNNs improve noise resistance and failure signal detection. Network-based lift failure 

detection is advanced in real time problem identification. Precision, early detection, noise resistance, 

and real-time defect categorization are its strengths. Study affects lift maintenance and find defects 

early to keep lifts functioning. Real-time defect classification eliminates laborious analysis, 

simplifying maintenance in which enhancements improve lift performance and reliability. 

Keywords: Elevator Fault Detection, Vibration Analysis, Weighted Fusion, Convolutional Neural 

Networks, and Network-based Monitoring. 
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1 Introduction 

Modern buildings require elevators for safe, efficient vertical transport of people and goods. However, 

repeated use wears them down, making them prone to malfunctions and safety problems. Urban 

infrastructure needs early problem identification to prevent major breakdowns, protect passengers, and 

optimize maintenance. Vibration analysis can detect elevator defects. By properly placing sensors, 

engineers can detect elevator shaft, motor, and cable vibrations. Vibration analysis is promising but has 

some disadvantages that prohibit it from detecting all defects. Data Utilisation is severely limited. 

Traditional techniques segregate displacement and acceleration data, losing the rich information inherent 

in both vibration signal components. This fragmented approach ignores displacement-acceleration links 

and nuanced findings from their combined investigation. Thus, these methods may not characterize 

elevator performance and fault manifestation's complicated dynamics (Do et al., 2023; Network, 2023; 

Pan et al., 2024; Ghosh, 2023; Zhang et al., 2020).  

Addressing these limitations will improve elevator problem detection and vertical transportation 

system reliability and safety in the built environment. Multidimensional data fusion, powerful machine 

learning algorithms, and algorithmic framework expertise can help researchers and practitioners create 

more resilient, adaptive, and effective elevator failure detection solutions. Working collaboratively to 

solve problems is the only way to build safer, smarter, and more resilient cities (De Albuquerque Filho 

et al., 2022; Wang, 2023; Li et al., 2022).  

This study introduces novel weighted fusion technique that overcomes elevator fault detection 

method limitations by syncing displacement and acceleration data. The solution enhances elevator 

failure detection accuracy and robustness by addressing past algorithms' flaws that overlook both data 

modalities' insights. Deep learning networks evaluate elevator component vibration signals in our 

method. The network design provides a more thorough elevator health assessment by combining data 

sources. The network designed to extract features sensitive to distinct defect types by appropriately 

weighting data streams during fusion, improving its ability to detect tiny differences indicating 

underlying faults (Do et al., 2023; Pan et al., 2024; Ghosh, 2023; Lee et al., 2021).  

The elevator vibration signal weighted fusion and deep learning architecture matter. The defect 

detection methodology should outperform generic methods without contextual relevance by adapting 

the network architecture to elevator data and using domain-specific knowledge to create models. The 

lift data-specific approach is not generic. This contextual adaptability and domain-specific knowledge 

boost our models' relevance and efficacy. Our method was validated using real-world and simulated lift 

vibration data. We improve defect detection accuracy and false positive and negative rates over baseline 

models. Our elevator maintenance technique is reliable and practical, according to this study. Advanced 

deep learning, displacement and acceleration data, and domain expertise empower vertical transportation 

system stakeholders. This proactive maintenance solution ensures system safety, dependability, and 

efficiency, especially in modern buildings with developing operational issues (De Albuquerque Filho et 

al., 2022; Wang, 2023; Li et al., 2022; Zhang et al., 2021).  

In response to need for a more comprehensive and effective elevator failure detection approach, this 

study sets goals to overcome its limitations. We want to create a network-based defect detection system 

combining displacement and acceleration data, deep learning, and new weighted fusion. Our study 

automatically identifies elevator vibration faults using deep learning. We use deep learning for elevator 

data to improve problem identification accuracy and reliability while reducing subjective and inefficient 

manual analysis and rule-based procedures (Lee et al., 2021; Zhang et al., 2021; Gawde et al., 2021) 
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Author use weighted fusion to include displacement and acceleration data into deep learning. For 

more flexible fault-responsive features, our method weights each data modality during fusion. Real-

world and simulated lift vibration data will be used to test our system against traditional and network-

based fault detection methods. The strategy of data will succeed and be efficient with this comparison. 

In-depth research on sensor locations and configurations and detection accuracy will enable install the 

system in many architectural circumstances. Feature visualisation and XAI improve model 

interpretability. These tactics will establish building management and maintenance confidence by 

explaining neural network decision-making. Vertical transport system problem identification, 

maintenance, safety, and efficiency are our research goals. Our displacement and acceleration-based lift 

problem detection system could improve operating efficiency and passenger safety in modern buildings. 

Elevator maintenance is transformed and urban infrastructure management may improve. 

2 Literature Review  

Modern building infrastructure needs proactive lift safety and reliability measures to run efficiently and 

avoid malfunctions. Early fault detection is essential for passenger safety, maintenance schedule 

optimisation, and downtime savings. Vibration analysis detects lift defects by non-invasively checking 

essential component health. Motor, gearbox, guide rail, and automobile components use accelerometers 

or displacement sensors to detect lift vibrations. These sensors monitor lift system dynamics and 

component health. Sensor location, sample rate, and preprocessing affect vibration data interpretation. 

Sensor installation for fault types requires field research. High sample rates are needed to record useful 

frequency components, and filtering and normalization isolate relevant data (Gonzalez-Jimenez et al., 

2021; Kim et al., 2020; Jiang, 2023; Chae et al., 2022). 

2.1 Challenges in Deep Learning for Lift Fault Detection 

Model explainability and labelled training data for numerous mistake scenarios are issues for deep 

learning systems. Resources are needed to label vibration data for various failure conditions, and deep 

learning models' "black box" nature makes them difficult to comprehend in safety-critical applications 

like lift fault detection. Several challenges must be overcome to employ deep learning for lift defect 

detection and vertical transportation system safety and dependability in modern structures. Multiple 

fields require network-based failure detection (NFD) for complicated system dependability and 

performance. Industrial machinery, transportation, and communication networks are monitored by NFD 

(Jiang, 2023; Chae et al., 2022; Zhang et al., 2022; Chommuangpuck et al., 2021). To prevent failures 

and optimize operating efficiency, NFD detects, categorizes, and localizes defects utilizing sensor data 

from many system locations. NFD analyses sensor data for unusual operating circumstances that may 

indicate issues. To fix network defects, NFD algorithms and models discover, categories, and localize 

issues. This multimodal technique lowers downtime and enhances system reliability with preventative 

maintenance and targeted adjustments (Glowacz, 2023; Shu et al., 2024; Gong et al., 2022). 

2.2 Weighted Fusion for Enhanced Fault Detection 

The "black box" nature of deep learning models hinders safety-critical applications like lift failure 

detection. Opacity in these models reduces decision-making confidence and interpretability. Weighted 

fusion may help defect detection systems overcome these restrictions and improve. Weighted fusion 

integrates vibration, motor current, temperature, and sensor health data to boost performance. Weighted 

fusion weights data sources by problem kind and confidence level to improve fault detection. Although 
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weighted fusion research on lift defect detection is scarce, sensor fusion for autonomous vehicles and 

microphone array signal fusion for speech recognition demonstrate its potential. Multiple data sources 

weighted together improve study accuracy and robustness. Although network-based defect detection 

utilizing vibration analysis improves lift safety and maintenance, many concerns remain. Address data 

quality, availability, and missing or noisy data. To build safety-critical trust and knowledge, interpret 

deep learning models' decision-making processes. Network-based systems need effective cybersecurity 

to detect faults and prevent cyberattacks. Weighted fusion may improve lift failure detection system 

dependability and vertical transportation infrastructure safety and maintenance (Huang et al., 2023;  

Jiang et al., 2023; Gu et al., 2020).  

2.3 Future Directions in Lift Fault Detection 

Lift difficulties can be diagnosed many ways. Traditional approaches detect problems using 

displacement or acceleration signals. Wavelet and Fourier transforms extract vibration data properties. 

They use one type of data; hence they only present a partial picture of the system's condition. Manual 

feature selection and calibration bias fault detection in noisy or changing operational conditions. 

Advanced methods use SVMs and decision trees to classify faults using extracted attributes (Kim et al., 

2020; Fernandes et al., 2022). These methods are more accurate and efficient than standard signal 

processing for complicated, high-dimensional data. They generally ignore multimodal data integration 

benefits and treat displacement and acceleration data individually. Machine learning models require 

training data quality and representativeness, yet uncommon errors may make them difficult to acquire. 

Lift system models cannot generalise well to fresh data because to this limitation. 

This work has a more extensive fault identification feature set than current approaches due to 

weighted integration of displacement and acceleration data. This method describes vibration signals 

better than traditional and complex methods using several data streams. CNNs automatically learn and 

extract essential properties from fused data (Huang et al., 2023; Jiang et al., 2023; Gu et al., 2020). 

Weighted fusion maximises feature extraction and model focus on critical data, enhancing problem 

detection accuracy and robustness. Data segregation-free lift flaw detection is improved using deep 

learning. Our adaptability to different data situations and ability to handle complicated data patterns help 

current lift systems that need reliable and preventive maintenance. Finally, gap and possibility study will 

improve networks-based lift fault detection via vibration analysis. Based on literature review, the author 

draws the conceptual framework of the study in figure. 
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Figure 1: Conceptual Framework 

3 Research Methodology 

This work builds a network-based lift fault detection system using vibration analysis. This technology 

enhances defect identification accuracy and noise resistance by using acceleration and displacement 

data. The study collects data using three-axis acceleration sensor and displacement sensor on the car. 

These sensors strategically monitor acceleration and displacement vibration in three orthogonal axes. 

The data collection phase includes lift activities like ascending and descending with varying loads and 

simulated fault circumstances including misalignment, bearing wear, and door malfunction. Timestamps 

and operational and simulated malfunction labels are carefully synced for each data point. 

The unique weighted fusion approach synergistically blends acceleration and displacement sensor 

data. This fusion strategy prioritizes error-finding data sources. Weights are based on feature relevance 

and domain competence. LASSO regression and feature selection algorithms find important sensor 

features for weighting. Domain experts can explain how defects affect acceleration and displacement 

values to help allocate weight. Weighted fusion mathematically fuses sensor data streams to provide 

acceleration and displacement data. This fusion equation, Fused data = w1 * Acceleration data + w2 * 

Displacement data, underpins the defect detection system's analytical foundation. 

The research approach uses CNNs and weighted fusion to extract features from fused vibration data. 

CNNs, which can learn precise patterns from sequential data like time series, can discover tiny vibration 

faults. CNNs carefully use convolutional layers for feature extraction, pooling layers for dimensionality 

reduction, and fully connected layers for fault classification. Hyperparameter tweaking improves fault 

detection and reduces overfitting. Training and assessment assess the defect detection system's 
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performance. To facilitate model development and validation, the dataset is carefully separated into 

training, validation, and testing sets. The validation set checks CNN model performance during iterative 

training with training data to avoid overfitting. The trained model's defect detection accuracy is 

confirmed on unseen testing data using accuracy, precision, and recall metrics (De Albuquerque Filho et 

al., 2022). 

This research captures several data samples to capture lift system operational and failure states. Lift 

operation scenarios are captured in the dataset and labelled with several attributes for analysis. A 

consistent and coherent data format across all samples provides extensive insights into lift component 

vibrational dynamics under varied conditions. Data samples of typical lift operation can reveal defects 

or inconsistencies. These data points reveal lift vibrations during loading and operating. Normal 

operation data shows lifts' baseline vibrational characteristics by meticulously documenting root mean 

square (RMS), peak-to-peak (P2P) amplitudes, and statistical metrics like mean and standard deviation. 

Some failure scenarios are simulated or experienced in real-world operations during data collection. 

Each likely fault scenario entails gathering data points with vibratory signatures. Simulated gearbox 

fault data would show odd vibration patterns using feature analysis (Ghosh, 2023). 

The vibration signals, motor current values, and temperature data improve lift health evaluation. 

Extra data sources improve the defect detection system's analytical capabilities, allowing a more 

complete lift performance and integrity analysis. After careful selection and annotation, each data sample 

represents a specific operational environment and has all the information needed for analysis and model 

training. This research collects a large and well-curated dataset of normal operations, simulated fault 

scenarios, and auxiliary data sources to build a reliable network-based lift failure detection system.  

Gathering real-world vibration data from operational lifts requires collaboration with lift repair firms 

or building management entities. This entails placing accelerometers or displacement sensors on critical 

lift components based on expected issues like gearbox or misalignment. After data gathering, intensive 

preprocessing cleans and refines vibration signals. Improved signal-to-noise ratio and defect diagnosis 

are achieved via advanced filtering. Normalizing segmented vibration data across operational situations 

ensures consistency. The study technique relies on feature extraction from preprocessed vibration data. 

This phase extract’s fault classification and analysis information from raw vibration data using time-

domain and frequency-domain decomposition. Motor current or temperature readings provide 

complementary features to expand the dataset and assist fault identification (Wang, 2023). 

The research implements weighted fusion using a carefully selected dataset of important attributes 

and fault kinds. Data sources are selected using feature analysis and subject expertise, and weighting 

algorithms determine their significance. Weighting strategies increase fault detection accuracy and 

robustness using domain-specific information. Convolutional neural networks are used to construct a 

specific defect detection model. This defect detection system is tested on a carefully selected dataset to 

work under various operational conditions and problem types. The fault detection model is extensively 

tested utilizing accuracy, precision, recall, and F1-score. Data sample paragraphs complement the 

arduous research process by providing a concise yet thorough dataset overview. Each data sample 

contains crucial lift operation and fault data. Careful annotation and categorization of these data samples 

reveal lift system vibrational dynamics under diverse situations, laying the framework for defect 

detection model design and validation (De Albuquerque Filho et al., 2022; Lee et al., 2021). 

Sample 1: Normal Action 132 data points showed lift operation. The data points include RMS, P2P, 

mean, and standard deviation vibration signal properties. The lift ID, time stamp, operation mode 
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(Upward/Downward/Idle), and load condition (Empty/Low/Medium/High) are also included. This data 

will identify abnormal operations or faults. 

Sample 2 (Potential Fault Scenario): The category with 201 data points is "Gearbox Fault." Similar 

to operating data, this category includes vibration signals, timestamps, lift data, etc. Due to the gearbox 

problem, some characteristics may differ. Network-based fault detection can identify this failure type by 

comparing deviations to typical operating data. 

Sample 3 (Additional Data): Include motor current and temperature. Example: "We collected 201 

gearbox defect data points, including vibration and lift indications. This data also offers motor current 

readings (average, maximum, minimum throughout recording segment) to assess lift health during 

fault." 

Data Processing 

Preprocessing data enhances input quality and relevance, affecting our fault detection model. Cleaning 

accelerometer and displacement sensor vibration data removes abnormalities and noise that could affect 

analysis. Low-pass and high-pass filters remove extraneous frequencies to isolate important vibration 

signals. Data normalisation adjusts vibration data to 0 or 1 depending on the neural network. Data 

magnitude variations must not distort CNN learning. Data augmentation can add data when labelled data 

is insufficient. Time-shifting, noise, and scaling boost model generalisation and fault tolerance data 

variances. 

CNN Architecture and Hyperparameters 

This CNN architecture handles lift-fused vibration data. Additional convolutional layers extract features 

after one input layer receives fused data as a multidimensional array. Each convolutional layer captures 

edges, textures, and fault-type patterns with many kernels. Pooling layers, especially max-pooling 

layers, after each convolutional block minimise feature map spatial dimensions, reducing processing 

cost and confining overfitting to the most important features. ReLU activation promotes non-linearity 

and interprets complex data patterns at these levels. After convolutional and pooling layers, fully 

connected layers improve decision-making by combining recovered features. CNN output layer 

probabilistically predicts multi-class defect categories using softmax activation function. CNNs optimise 

hyperparameters, including the learning rate, which governs weight modification during 

backpropagation and is usually 0.001–0.01. Before weighting the model for memory and training speed, 

32 or 64 samples are taken. The model is trained for 50–200 epochs based on loss function convergence 

and validation set performance. 

Weighted Fusion Technique 

We use weighted fusion to merge displacement and acceleration data into one CNN input. This method 

weights displacement and acceleration data types by fault identification significance using a weighted sum. 

In mathematical terms, the fused input 𝑋d fcan be represented as follows if 𝑋a drepresents the 

displacement data and 𝑋farepresents the acceleration data. 

𝑋𝑓 =  𝑤𝑑 . 𝑋𝑑 + 𝑤𝑎 . 𝑋𝑎 

Weights 𝑤𝑑 and 𝑤𝑎 are assigned to displacement and acceleration data, respectively, using empirical 

analysis and optimisation approaches. By weighting each data stream's contribution to the final feature set, 

the model can stress more informative data. Iterative weight testing maximises model correctness on a 
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validation dataset. Giving adequate weights allows the model to use the strengths of both data types, 

resulting in a more nuanced and comprehensive feature representation. The weighted fusion method makes 

the model more resilient and flexible to sensor data and fault detection settings by merging many data 

modalities. 

4 Research Analysis 

Key lift failure detection sensor features are in Table 1. The sensors record crucial lift behaviour and 

performance. The ADXL355 MEMS tri-axial accelerometer was employed in this study for its accuracy. 

X, Y, and Z acceleration are measured. With its tri-axial capacity, the lift's dynamic motion may be 

monitored for problems such excessive vibrations or accelerations. Like the tri-axial accelerometer, a 

displacement sensor monitors lift car vertical movement. MT-40 Linear Potentiometer with 1000mm 

travel was used in this study. The sensor precisely measures displacement within its range to assess lift 

movement during operation.  

Table 1: Sensor Specifications 

Sensor Type Model/Description Measurement Axes 

Tri-axial 

Accelerometer 

ADXL355 (Micro-electro-mechanical 

systems (MEMS) accelerometer) 

X, Y, Z 

Displacement 

Sensor 

MT-40 Linear Potentiometer (1000mm 

travel distance) 

Measurement Range (mm) 

Table 2 summarizes data collection by operating and simulated failure conditions. Every table column 

shows the number of data points collected in different settings, reflecting the dataset's scope and depth. 

The table records regular rise and descent under empty to full load capabilities. Examples of fault kinds 

and severity levels are shown. Misalignment, bearing wear, and looseness are severity 1–3 problems. To 

structure and comprehend the study's massive dataset, Table 2 categorizes data gathering by operational 

settings and problem circumstances. This organized approach improves lift maintenance and safety by 

enabling statistical analysis, machine learning model training, and defect detection algorithm 

development. 

Table 2: Data Collection Summary 

Operating Condition Simulated Faults (if 

applicable) 

Number of Data Points 

Normal Ascent (Empty Load) - 132 

Normal Ascent (Partial Load) - 178 

Normal Ascent (Full Load) - 201 

Normal Descent (Empty Load) - 145 

Normal Descent (Partial Load) - 117 

Normal Descent (Full Load) - 83 

Faulty Scenario 1 (e.g., 

Misalignment) 

Severity Level 1 68 

Faulty Scenario 1 (e.g., 

Misalignment) 

Severity Level 2 42 

Faulty Scenario 2 (e.g., Bearing 

Wear) 

Severity Level 1 87 

Faulty Scenario 2 (e.g., Bearing 

Wear) 

Severity Level 3 28 

Faulty Scenario 3 (e.g., Looseness) Severity Level 1 54 

Faulty Scenario 3 (e.g., Looseness) Severity Level 2 36 
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Table 3 shows the proposed system's fault detection accuracy, precision, recall, and F1-score across 

fault classes. The system correctly classifies 92.50% of lift operations as "Normal Operation". High 

precision and recall of 91.80% and 93.20% imply balanced common operation identification with few 

false positives and negatives. Precision-recall F1: 92.50%. The method correctly classifies 86.30% of 

"Misalignment" instances as Level 1. The system's high precision, recall (84.70% and 87.90%), and low 

false positive rate detect misalignment. Class scores well at 86.30% F1. From Level 1, "Misalignment" 

accuracy increases to 90.10% at Severity Level 2. With stronger precision and recall than Level 1, we 

find 88.50% and 91.70% of Severity Level 2 misalignment issues. F1-score is higher for Class (90.10%). 

System correctly recognizes 81.20% of Severity Level 1 "Bearing Wear" concerns. Precision and recall 

are 79.40% and 83.00% for this class, indicating balanced bearing wear problem identification with few 

false positives and negatives. Class F1-score is 81.20%. Level 2 "Bearing Wear" accuracy is 88.70%, 

better than Level 1. 87.10% recall and 90.30% precision indicate balanced Severity Level 2 bearing wear 

recognition. Class F1-score is 88.70%, excellent. Due to greater accuracy and balanced precision-recall 

trade-offs for more severe problems, the fault detection system works across fault classes. 

Table 3: Fault Detection Performance 

Fault Class Accuracy Precision Recall F1-score 

Normal Operation 92.50% 91.80% 93.20% 92.50% 

Misalignment (Severity Level 1) 86.30% 84.70% 87.90% 86.30% 

Misalignment (Severity Level 2) 90.10% 88.50% 91.70% 90.10% 

Bearing Wear (Severity Level 1) 81.20% 79.40% 83.00% 81.20% 

Bearing Wear (Severity Level 2) 88.70% 87.10% 90.30% 88.70% 

Why are the data values in these two columns exactly the same? 

The one-dimensional CNN model for vibration data feature extraction for lift defect detection is 

shown in Figure 2. Lift operation temporal dynamics must be analysed with this model to find issues. 

CNN architecture function for each figure component: At model start, the input layer receives 

preprocessed vibration signals as a one-dimensional array of numerical values. A single digit shows the 

vibration amplitude. Array length represents signal temporal granularity via sample rate and analysis 

time frame. The convolution layers: 

One convolutional layer, but stacked layers extract more. Convolutional layers filter data with 

learnable kernels. Filtering input signals for operating status or problem patterns. Filters can discover 

tiny faults or anomalies by capturing spatial-temporal vibration signal correlations using data learning. 

Possible CNNs may have a pooling layer after the convolutional layer. Pooling layers reduces 

convolutional feature map spatial dimensionality. Eliminating unnecessary characteristics and capturing 

useful ones reduces model complexity and overfitting. After each convolutional layer, non-visible 

activation functions enhance non-linearity. Activation functions like ReLU enable the model express 

itself and learn complex data relationships. Convolutional layers flatten feature maps into one-

dimensional vectors.  
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Figure 2: One-dimensional CNN Model 

The kernel density estimate probability density function of displacement and acceleration vibration 

data distribution is shown in Figure 3. Across "Displacement Distribution" and "Acceleration 

Distribution," the figure shows lift vibration. Lift car displacement looks to be near 0 for most of the 

recording. The car remains still throughout floor transitions or small pauses in a standard elevator. Upon 

closer inspection, the right curve has a little positive skew, extending wider than the left. Asymmetry 

demonstrates lift start/stop creates larger positive displacements. These deviations from the central 

tendency show that lift operation is dynamic, with displacement variations throughout regular 

maneuvers. Like displacement data, acceleration clusters around zero. Based on this distribution pattern, 

lift operation typically involves regulated movement dynamics with low speed or acceleration variations. 

Acceleration and displacement distributions differ greatly. Acceleration is less quantified and 

unpredictable than displacement. For passenger comfort and safety, the lift's mechanical mechanism may 

limit acceleration. Without fault state reference plots or other data, Figure 3's distributions may not 

accurately represent lift vibration. Measurement of displacement and acceleration ranges is difficult 

without axis values. Data collection without lift operational backdrop complicates distribution 

interpretation. Normal or abnormal vibration patterns are hard to determine without load capacity, floor 

transitions, or mechanical anomalies. The results of data implies the lift may be working based on 

moderate movement signals, but further data and comparison are needed to assess health. Integrating 

data with fault-condition reference plots helps researchers comprehend lift vibration dynamics and find 

operational anomalies. 

 

Figure 3: Vibration Data Distribution Using CNN 
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Recall measures model fault detection. Weighted fusion improves gearbox and bearing fault recall 

(79.10% vs 68.30%) and 62.80% vs 45.20%), although bearing problem diagnosis may be superior. Even 

with fusion data, the model may miss bearing difficulties shows in table 4. The harmonic mean of 

precision and recall, F1, balances model performance. Memory suggests weighted fusion boosts gearbox 

and bearing F1 ratings. Fusion equalizes true and erroneous positives. The false alarm rate is the 

percentage of typical operations misdiagnosed. Network-based systems with weighted fusion have 

8.70% false alarms compared to 12.40% without fusion. Fusion may disable system alarms. The table 

shows that weighted fusion improves lift network-based fault identification.  

Table 4: Performance Evaluation with Weighted Fusion Approach 

Metric Description Network-Based 

(No Fusion) 

Network-based 

(Weighted Fusion) 

Accuracy Overall fault 

detection 

82.50% 89.20% 

Precision 

(Gearbox 

Fault) 

True positives for 

gearbox faults 

80.10% 88.40% 

Precision 

(Bearing 

Fault) 

True positives for 

bearing faults 

78.70% 84.90% 

Recall 

(Gearbox 

Fault) 

Actual gearbox 

faults correctly 

identified 

68.30% 79.10% 

Recall 

(Bearing 

Fault) 

Actual bearing 

faults correctly 

identified 

45.20% 62.80% 

F1 Score 

(Gearbox 

Fault) 

Harmonic mean of 

precision & recall 

(Gearbox) 

73.80% 83.70% 

F1 Score 

(Bearing 

Fault) 

Harmonic mean of 

precision & recall 

(Bearing) 

58.70% 72.90% 

False Alarm 

Rate 

Normal operation 

misclassified as 

faulty 

12.40% 8.70% 
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The defect detection approach works in lift systems of various sizes and types, according to a 

scalability research table 5. The model has 95% accuracy and 3% and 2% false positive and negative 

rates for 10 lift homogeneous systems. 5 hours of training and 100 ms per detection inference for this 

scale. This proves the strategy works well in simple, low-lift facilities. At medium (50 lifts) and large 

(200 lifts) system scales with different types, accuracy drops to 94% and 93%. Despite this decrease, 

false positive and negative rates rise to 4% and 5% and 2% to 3%. Training and inference take 15 hours 

for medium systems and 48 for large. Big systems infer in 150–200 milliseconds. This shows that while 

the approach remains stable and accurate over larger and more diversified systems, data processing 

compute demands and complexity rise, which may affect real-time application scalability and efficiency. 

The method's constant performance across scales shows its adaptability and robustness to system 

complexity and data volumes. 

Table 5: Scalability Analysis 

System 

Scale 

System 

Diversity 

Number 

of 

Elevators 

Data 

Volume 

Training 

Time 

Inference 

Time 

Accuracy False 

Positive 

Rate 

False 

Negative 

Rate 

Small Homogeneous 10 500 GB 5 hours 100 ms 95% 3% 2% 

Medium Heterogeneous 50 2 TB 15 hours 150 ms 94% 4% 2% 

Large Heterogeneous 200 10 TB 48 hours 200 ms 93% 5% 3% 

5 Discussion and Findings 

This study describes a network-based lift failure detection system. This article examines a CNN-based 

lift failure detection system that improves lift maintenance and safety. Lift sensor vibration data is 

filtered and normalized to decrease noise and standardize data across sensors and operating 

circumstances. Preprocessing vibration data gives the CNN model high-quality fault detection input. 

Filtering ambient and electrical noise and normalizing data from several sources are needed for accurate 

feature extraction and issue identification, according to the study. Conventional machine learning 

methods require feature engineering to uncover useful qualities in raw vibration data, whereas CNNs 

can do so automatically. Fast Fourier Transform CNNs can detect high-frequency motor bearing 

vibrations. The Receiver Operating Characteristic (ROC) curve compares true positive and false positive 

rates. Lift maintenance experts must balance problem detection and false alarms by categorizing 

(Fekrmandi et al., 2023). 

Technical concerns and constraints of the system, such as the need for high-quality vibration data for 

effective training and the potential of false alerts from unanticipated operational conditions or sensor 

noise, are discussed. Lift designs and operating features may affect system performance, necessitating 

model retraining or fine-tuning for accuracy. The study suggests fusing vibration, motor current, and 

temperature sensors to improve problem detection. Explainable AI (XAI) should increase stakeholder 

trust in the system's reliability and safety and transparency in decision-making. The research also 

examines the network-based lift failure detection system's weighted displacement and acceleration data 

integration to better lift system condition evaluation. This technology automatically discovers essential 

elements for better lift system and urban infrastructure defect detection. The research suggests testing 

the system across building types, operational conditions, lift brands, and models to assess its scalability 

and resilience. Valid systems work in various scenarios (Jiang, 2023; Chae et al., 2022; Zhang et al., 

2022). 
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Final criteria for lift failure detection system acceptance include structured data administration, 

sensor reliability, safe data transfer, and fast model updates to adapt lift system alterations. The "black 

box" characteristic of CNNs may mask problem detection findings, making deep learning models 

difficult for safety-critical applications. XAI clarifies model outputs, calming building management, 

maintenance, and regulators. The study indicated that resolving these issues and improving network-

based lift failure detection could improve lift safety and maintenance in present infrastructure. 

6 Conclusion 

The paper presents a network-based lift defect detection system for maintenance and safety. Network-

based lift defect detection using CNNs and machine learning improves lift system maintenance and 

safety. Lift sensors use motor current and temperature data to automatically extract and classify operating 

vibration signals to detect issues. Based on accuracy, precision, recall, and ROC curves, the system 

optimises classification thresholds and reduces false alarms, improving proactive lift maintenance and 

safety. The system's capacity to generalise and discover defects in diverse operational scenarios depends 

on the quality and quantity of vibration data used for training. Calibrate classification thresholds to avoid 

incorrect alarms from sensor noise or unexpected conditions. Different lift designs or operations may 

require system retraining or fine-tuning. Therefore, future research should simulate multiple operating 

situations during training and study multi-sensor fusion and Explainable AI (XAI) to increase fault 

detection accuracy and model interpretability to strengthen system resilience. 

The study also shows how weighted fusion may combine displacement and acceleration data to 

evaluate the lift system and find problems. Proactive maintenance is possible due to its lift system 

adaptability and urban infrastructure compatibility. Assess the model's scalability and dependability 

across lift systems and operations. To improve lift safety and reliability, building management systems 

must integrate this technology with temperature and humidity sensors. 

7 Research Implications 

The network-based lift failure detection system has potential, limitations, and unknown regions. The 

system's efficacy depends on collecting enough and high-quality vibration data from varied fault 

circumstances, hence training data quality and quantity are limited. Low-quality data may hinder system 

generalization and error detection. Despite great accuracy, sensor noise or unexpected operational 

situations may cause false alerts. The classification threshold must be calibrated to reduce false alarms 

and reveal real issues. The algorithm may need retraining or fine-tuning on lift models with very diverse 

designs or operational characteristics. Future recommendations aim to overcome these constraints to 

improve the system. To make the system more resilient and capable of handling additional scenarios, 

simulate operational conditions or noise during training. Multi-sensor fusion increases flaw detection 

without vibration by using motor current and temperature. CNN's decision-making and focused changes 

could benefit from XAI. Continuous learning would retrain the model with new data to respond to new 

fault kinds or operational conditions. Despite these limitations, the technique shows promising results. 

CNN automated feature extraction saved time and money by eliminating feature engineering. 

Timestamps, lift data, and vibrations aid lift problem diagnosis. Performance measurements and ROC 

curves optimize classification thresholds and evaluate systems. Finally, the network-based problem 

detection system might transform lift safety and maintenance with more recommendations and 

discoveries. 
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