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Abstract 

Wireless Sensor Networks (WSN) based Internet of Things (IoT) networks have achieved greater 

research interest due to their multi-purpose data collection and transmission over different 

geographical locations. However, the fabrication of different cyber-attacks in these networks has 

been a severe concern for applications such as remote healthcare, military communications, etc. 

These attacks question the integrity and security of WSN-IOT networks for such applications, and 

the traditional Intrusion Detection Systems (IDS) have shown increased false alarm rates because of 

their substantial processing overhead, resource constraints, and low detection rates. This paper 

presents an intelligent IDS model using Chaotic Walrus Optimization-based Convolutional Echo 

State Networks (CWO-CESN) to solve existing problems. It increases the detection accuracy of 

different attacks. In this CWO-CESN-based IDS model, the data are gathered from the sensor/IoT 

nodes and are pre-processed. Then, the proposed CWO-CESN learns the features from these data 

and classifies them into attacks and standard data classes. This proposed CWO-CESN is a hybrid 

classifier model that integrates Convolutional Neural Networks (CNN) and Echo State Networks 

(ESN) as a single model and employs Chaotic map-based population initialized Walrus Optimizer 

for optimizing the hyperparameters. Validated on benchmark datasets, the proposed                            

CWO-CESN-based IDS model attained accuracies of 99%, 99.5%, and 99.8% for the detection of 

different attacks for NSL-KDD, WSN-DS and IoT-23 datasets, respectively, and ensured secured 

and reliable application in significant fields. 

Keywords: Wireless Sensor Networks, Internet of Things, Intrusion Detection System, 

Convolutional Echo State Networks, Chaotic Walrus Optimization, Flooding Attacks. 

1 Introduction 

WSN is popularly known as a specialized subset of wireless networks designed to facilitate collecting, 

preparing, and communicating data from multiple spreader sensor nodes deployed in various domains. 

IoT allows devices to communicate with each other and users, creating a vast ecosystem of intelligent, 

connected systems. IoT standards and protocols allow WSNs to communicate with many other IoT 

devices and systems (Ghaleb & Varadharajan, 2020). IoT enables WSNs to scale more efficiently in 
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terms of the more significant number of nodes. These networks are characterized by their ability to 

operate independently, often in resource-constrained environments, to monitor physical or 

environmental parameters. WSN leverages low-power, multi-hop communication protocols to support 

scalability, robustness, and energy efficiency. This network is widely utilized to provide real-time 

monitoring, remote data collection, and scalability (Ba Hmaid & Varadharajan, 2020). Yet, the WSNs 

are resource-constrained and distributed networks vulnerable to cyber-attacks and intrusions. For the 

security challenges, the IDS techniques were integrated with WSN-IoT networks to enhance security by 

monitoring network traffic and sensor data to detect suspicious behaviour and potential attacks in                

real-time (Ba Hmaid & Vasanthi, 2020). This integration ensures data integrity and privacy, effectively 

manages threats, and maintains security compliance. 

Conventional methods such as signature and rule-based detection methods are utilized in IDS for 

WSN-IoT (Ram & Chakraborty, 2024). The signature-based techniques, including pattern matching, 

detect the threats by comparing the attack signatures to the collected database signature to identify the 

intrusions. The rule-based method applies rules to detect suspicious behaviour based on known attack 

patterns. Yet, these models have high false positive rates and struggle with zero-day and unknown 

attacks (Khedr et al., 2020). The drawbacks of the conventional methods are resolved using DL and ML 

techniques. The DL methods such as RNN, CNN, LSTM, and Autoencoder provide advanced 

capabilities in anomaly detection by learning complex mappings from large-scale data (Camgözlü & 

Kutlu, 2023). The ML methods, namely Decision tree (DT) and random forest (RF), have increased the 

precision in the classification and detection of diverse attack types (Adnan et al., 2021). However, class 

imbalance issues, over-fitting, high latency, and ineffective hyperparameter optimization frequently 

hinder the DL and ML models. A hybrid Chaotic Walrus Optimization-based Convolutional Echo State 

Networks (CWO-CESN) model is developed to overcome these limitations. 

The developed CWO-CESN model incorporates several critical steps for effective intrusion 

detection. Initially, datasets are gathered from reputable sources, including NSL-KDD, WSN-DS, and 

IoT-23 (Hui et al., 2019). The data pre-processing steps involve KNN imputation to address the missing 

values and Min-Max normalization for data scaling, with the SMOTE method applied for class 

imbalance. The CESN model integrates CNN and Echo State Networks (ESN) in a single architecture, 

establishing their complementary strengths for enhanced intrusion detection. The CNN model excels in 

identifying patterns and correlations from the pre-processed data that are used for detecting abnormal 

events, and the ESN model is used for capturing the temporal dependencies of the network traffic with 

computational efficiency. The CESN model integrates the ability of CNN and the ability of ESN for 

spatial feature capturing and temporal feature modeling. The CWO algorithm is used to optimize the 

hyperparameters, such as the weight and bias of the CESN model. The CWO model combines the 

strength of chaos theory and walrus optimizer to increase the detection accuracy. 

2 Related Works 

Ramana et al., (2022) proposed a model using a Whale Optimized Gate Recurrent Unit (WOGRU) ID 

System for WSN-IoT networks (Skarmeta et al., 2015). The data pre-processing steps include data 

transformation and data labeling. The processed data are fed into GRU, and the WO technique optimizes 

hyperparameters. The model has experimented on the WSN-DS, and the WOGRU dataset achieved a 

99.8% accuracy, precision, specificity, recall, and F1-score. This model does not incorporate defensive 

measures but has a robust encryption scheme to defend against attacks. Krishnan et al., (2022) proposed 

a model using anomalous intrusion detection protocol (AIDP) and intrusion prevention protocol (IPP). 
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The proposed AIDP applied includes three stages. The nodes update their experience values based on 

the tiny attack and fault detection system (TAFDS). The experience values are exchanged between 

neighboring nodes, and the nodes update their reputation and trust values using historical data and newly 

received experience values. The proposed model used an NS-2 simulator and attained 24% E2E delay 

and 30% PDR. However, updating and exchanging experience values introduce communication 

overhead and increase the computational load on nodes. Subramani & Selvi, (2023) proposed a system 

designed by combining an Intelligent Multi-Objective Particle Swarm Optimization feature selection 

algorithm for developing the Intrusion Detection System (IMOPSO-IDS). The proposed model used the 

IMOPSO algorithm and MSVM classifier to select optimal features, and MSVM uses the features 

chosen for classification. The proposed model attained 99.92% precision, 97.47% recall, 97.72%                   

F-measure, and a training time of 25.24 seconds. However, the IMOPSO algorithm is computationally 

intensive for large datasets and complex feature spaces. Aljebreen et al., (2023) proposed a model using 

a Binary Chimp Optimization Algorithm with Machine Learning Intrusion Detection (BCOA-MLID). 

The features are extracted and selected using the BCOA algorithm based on fitness values. The selected 

features are given to MSVM with a Class-specific-Cost Regulation Extreme Learning Machine               

(CCR-ELM). Experiments were conducted using the WSN-DS dataset, and the proposed model 

achieved 99.63% accuracy, 97.91% sensitivity, 99.67% specificity, and 94.52% F-score. This model is 

not able to detect the Sybil attack and routing attack.  

Alruwaili et al., (2023) proposed a model using the Red Kite Optimization Algorithm with an 

Average Ensemble Model for Intrusion Detection (RKOA-AEID) technique. The features are extracted 

and selected using RKOA. The selected features are fed into the developed model, consisting of LSTM, 

BiLSTM, and BiGRU models. Experiments were conducted on the WSN-DS dataset, and the model 

achieved 98.94 % accuracy, 75.33% sensitivity, 96.45% specificity, and 79.52% F-score. Yet, the model 

has a trade-off between detecting attacks and correctly identifying non-attacks. Al Sawafi et al., (2023) 

proposed a model using a Deep Auto Encoder (DAE) and Deep Artificial Neural Network (DANN). The 

data are applied to the DAE-DANN model. For DANN architecture, the Multilayer Perceptron (MLP) 

is adopted. Experiments are conducted on the IoTR-DS dataset, and the proposed model achieved 98% 

accuracy, 92% precision, 92% recall, and 92% F1 score. Although efficient, the proposed model still 

suffers from detecting rank attacks. Altunay & Albayrak, (2023) proposed an optimized hybrid deep 

neural network (OHDNN) with enhanced conditional random field (ECRF). The ECRF algorithm 

developed CRF and CS for feature selection, which was applied to the OHDNN model for classification, 

combining attention mechanism, CNN classifier, and LSTM. For the NSL-KDD dataset, the model 

attained 97.17% accuracy, 97.32% precision, 97.02%recall, 95.92% F-measure, and 14.8% FPR. For the 

UNSW-NB15 dataset, the model attained 98.3% accuracy, 97.5% precision, 96.7% recall, 97.1%                       

F-measure, and 6.1% FPR (Jelena & Srđan, 2023). However, the model's performance and efficiency 

decrease when scaled to larger and more complex networks. Yao et al., (2023) proposed a lightweight, 

intelligent Network Intrusion Detection System (NIDS) using a one-class bidirectional Gated Recurrent 

Unit (GRU) autoencoder called, (Bi-GRU-AE) and ensemble learning. The OC-Bi-GRU-AE and EL are 

applied for classification, and the EL model balances the data. The proposed model attained 99.34% 

accuracy, 99.34% precision, 99.34% recall, and 99.34% F1 score on the WSN-DS dataset. The model 

attained 90.74% accuracy, 90.65% precision, 90.73% recall, and 90.11% F1-score for the UNSW-NB15 

dataset. On the KDD99 dataset, the model achieved 99.99% accuracy, 99.99% precision, 99.99% recall, 

and 9.99% F1 score. However, combining Bi-GRUs with an autoencoder and ensemble learning 

techniques results in high computational and memory requirements. 
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Narayanan et al., (2023) proposed a particle swarm optimization-based artificial neural network 

(PSO-ANN) model. The Monte Carlo method is utilized for feature extraction. The extracted features 

are applied to the PSO-ANN model, the ANN parameters are optimized using PSO, and the final 

classification result is obtained from the ANN model. The proposed model attained 90% accuracy and 

RMSE of 29%. However, the PSO gets trapped in local optima, particularly in high-dimensional spaces, 

limiting optimization effectiveness. Karthic & Kumar, (2023). proposed a model using a hybrid 

Convolutional Neural Network (CNN) with LSTM. The processed data are fed into the CNN-LSTM 

model for feature learning and classification. Experiments are conducted on two datasets, X-IIoTID and 

UNSW-NB15. For the UNSW-NB15 dataset, PSO-ANN achieved 92.90% accuracy, 92.91% precision, 

93.10% recall and 93% F1-score. Similarly, the X-IIoTID dataset achieved 99.80% accuracy, 99.67% 

precision, 99.5% recall and 99.6% F1-score. In this model, there is a lack of external feature selection 

techniques, which may increase the computational load. Awotunde et al., (2023) proposed an ensemble 

model enabled with a feature selection classifier. A chi-square statistical model is used for feature 

selection. The selected features are fed into the proposed ensemble models, which include XGBoost, 

bagging classifier, AdaBoost, extra trees, and RF for classification. The proposed model used a 

combined IoT dataset and attained 99% accuracy, 99.95% precision, 99.79% recall, and 99.75% F1 

score for the XGBoost model. However, XGBoost and RF can be computationally intensive, which may 

limit their scalability. 

Vembu & Ramasamy, (2023) proposed an intrusion detection system (IDS) that incorporates the 

convolutional neural network (CNN) model. The CNN selects the most relevant features. The whale 

optimization algorithm fine-tunes the CNN parameters to reduce false alarms and improve detection 

accuracy. For evaluation, CNN used the NSL-KDD dataset and attained 97% precision, 94.09% recall, 

95.50% F1-score, and 97.01% accuracy. However, the performance heavily relies on CNN's ability to 

select relevant features, which may not always generalize well to unseen or varied intrusions. Biswas et 

al., (2023). proposed a model using graph neural network (GNN) and Lyapunov optimization in wireless 

sensor networks for intrusion detection. The data was constructed into graph form and applied to the 

graph neural network (GNN) for the training process. The proposed model used the AWID dataset and 

attained 98.80% accuracy, 98.36% sensitivity, 99.14% precision, and 98.74% F1 score. However, 

Lyapunov optimization leads to additional computational overhead, increasing training time and 

resource requirements. Karthikeyan et al., (2024) proposed a novel and automated firefly algorithm with 

machine learning (FA-ML) technique. Features are selected using the Firefly algorithm and fed to the 

SVM for intrusion detection. The proposed model used the NSL-KDD dataset and attained 96.42% 

accuracy, 95.35% sensitivity, 98.36% specificity, 95.42%F1-score, and 96.48% AUC score. However, 

the GWO improves parameter tuning and introduces additional computational complexity and time. 

Bukhari et al., (2024) proposed a novel federated learning model with a stacked convolutional neural 

network and bidirectional long short-term memory (FL-SCNN-Bi-LSTM). The principle component 

analysis (PCA) is utilized for feature selection, and selected features are fed into the FL-SCNN-Bi-

LSTM model to classify attack nodes. The model achieved an accuracy of 0.997, F1-score of 0.996, 

precision of 0.998, and recall of 0.996 for the WSN-DS dataset, and accuracy of 0.9993, F1-score of 

0.9993, precision of 0.9993, and recall of 0.9992 for CIC-IDS-2017 dataset. The model can handle more 

complex networks but still struggles with increased data loads and computational costs. 

Talukder et al., (2024) proposed an innovative intrusion detection approach that integrates machine 

learning (ML) techniques with the synthetic minority oversampling technique Tomek link                      

(SMOTE-TomekLink) algorithm. SMOTE-TomekLink is applied for data balancing. Then, the 

processed data was used to propose ML techniques, including RF, DT, LightGBM (LGB), KNN, MLP, 
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and XGB, for final classification. The proposed model used the WSN-DS dataset for evaluation. The 

RF model attained 99.92% accuracy, 99.92% precision, 99.92% recall, 99.92% F1-score, 11%, MAE of 

MSE of 17%, and RMSE of 4.15%. The XGB model attained 99.84% accuracy, 99.84% precision, 

99.84% recall, 99.84% F1-score, MAE of 23%, MSE of 38%, and RMSE of 6.17%. However, the model 

has a high computational cost. Yaras & Dener (2024) proposed a one-dimensional Convolutional Neural 

Network and Long Short-Term Memory (1D-CNN-LSTM) model. The features are extracted and 

selected using the Pearson correlation coefficient method. The selected features are fed into the                      

1D-CNN-LSTM model for feature learning and classification. For the CICIoT2023 dataset, the model 

attained 99.96% accuracy, recall, precision, and F1 score. The TON_IoT dataset achieved 98.75% 

accuracy, precision, recall, and F1 score. The model's scalability for larger datasets is not addressed, and 

the model lacks in a dynamic environment. Ravindran, (2024) proposed a novel fuzzy logic-based 

intrusion detection system with a hidden Markov model (FIDS-HMM). The proposed FIDS-HMM 

model applied, the HMM estimates each HS's probability based on observed energy consumption and 

identifies high and low energy levels. The proposed model used an NS2 simulator and attained 

throughput of 90 rounds, energy consumption of 36mJ, delay of 27ms, packet delivery of 92%, and 

anomaly detection of 95%. However, the FIDS-HMM model does not improve the security level during 

the routing process. Aburasain, (2024) proposed an Enhanced Black Widow Optimization with Hybrid 

Deep Learning Enabled Intrusion Detection (EBWO-HDLID) technique. The proposed model attained 

98.81% accuracy, 90.84% precision, 78.95% recall, and 79.49% F1-score for ToN-IoT dataset, and 

98.35% accuracy, 84.85% precision, 80.95% recall, and 82.79% F1-score for Edge-IIoT dataset. 

However, the model's performance relies on the quality and diversity of the training data. Li & Yao, 

(2024) proposed a two-stage lightweight intrusion detection model based on self-supervised contrastive 

learning and self-knowledge distillation called CL-SKD. The model attained 99.95% accuracy on the 

NSL-KDD dataset, 99.80% on the CIC IDS2017 dataset, 100% on the BoT-IoT dataset, and 99.95% on 

the KDD CUP99 dataset. However, the developed model has high computational and requires high 

processing power and time. 

3 Methodology 

The proposed Chaotic Walrus Optimization-based Convolutional Echo State Networks (CWO-CESN) 

model is used to classify the attacks. The dataset used for IDS in WSN is collected from various 

repositories, including NSL-KDD, WSN-DS, and IoT-23. The missing values are removed from the 

collected data using the KNN method, and the data are normalized using the min-max normalization 

technique. The standard SMOTE method is used to solve the class imbalance issue. The processed data 

are given in the CESN model for feature learning and detection, in which the ESN model was integrated 

with the CNN model. The CNN model is used for capturing spatial features, and the ESN model is 

utilized to model temporal features to detect the attacks. The CESN model improves the performance of 

complex tasks by increasing classification and detection accuracy and produces more accurate solutions 

in WSN-based IOT networks. To further enhance the models' performance, the CWO technique was 

employed to optimize the hyperparameters of CESN. CWO integrated the Walrus Optimizer with chaos 

theory, which applied the chaotic theory concept to population initialization instead of randomization. 

Figure 1 represents the overall methods of the IDS model using CWO-CESN. 

1) System Model 

In the proposed IDS model for IoT-assisted WSN, the network comprises several nodes, including a 

source node, multicast senders, intermediate nodes, and destination nodes from the core structure of the 
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network. The source node originates the data that needs to be monitored in environmental conditions, 

and the collected data is transmitted through the network. The source node generates data, the multicast 

senders distribute it to multiple destinations, and the intermediate nodes facilitate communication across 

the network. The nodes are wirelessly interconnected with each node's transmission range. This network 

structure supports effective data collection, transmission, and intrusion detection within the WSN-IoT 

environment. 

 

Figure 1: Proposed IDS Model Using CWO-CESN 

2) Dataset Description 

The research utilized three intrusion datasets to evaluate the performance of IIDS for WSN, namely 

NSL-KDD, WSN-DS, and IoT-23. The NSL-KDD dataset consists of two main classes, namely normal 

and attacks. The attacks are classified into DoS, Probe, R2L, and U2R attacks. NSL-KDD contains 41 

features, including 9 basic features, 10 content features, 13 traffic features, and 1 feature of class label.  

WSN-DS dataset consists of 12 attack classes, namely DoS, Sinkhole, Sybil, Wormhole, Black hole, 

Replay, Selective Forwarding, Spoofing, Hello Flood, Node Replication, Energy Exhaustion, and 

Routing Attacks. The features range from 20 to 40, typically including network traffic metrics, sensor 

data, and performance indicators.  
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IoT-23 is a synthetic dataset created to simulate network traffic involving IoT devices. It contains 81 

features: basic network features, traffic and flow features, statistical features, protocol-specific features, 

and anomaly and attack Indicators. The attack types are classified into Botnet, DoS, DDoS, Port 

Scanning, Brute Force, SQL Injection, XSS, C2, and Normal Traffic. Characteristics of the Datasets 

shown in table 1. 

Table 1: Characteristics of the Datasets 

DATASET ATTACK CLASS DATA CLASS 

NSL-KDD Dos, U2R, Probe Attacks Basic, Content, and 

Traffic 

WSN-DS Black hole, Flooding, DoS attacks in WSN, Gray 

hole, and Scheduling attacks in IoT. 

Normal, Gray hole 

IoT-23 Twenty network attacks from infected IoT devices 

and three networks from real IoT devices 

 

Benign and 

Malicious 

3) Data Pre-processing 

The collected data are pre-processed to improve the model's performance effectively. The missing values 

are removed and replaced using the KNN technique, which considers the point nearest to the data value. 

The nearest value (𝐾) is found, and using the Euclidean distance formula, the distance between the 

instances and the missing values is calculated. The equation (1) is given as, 

𝐸𝐷(𝑥, 𝑦) =  √∑ (𝑥𝑖 − 𝑦𝑖)2𝑛
𝑖=1      (1) 

Here, 𝑥𝑖 𝑎𝑛𝑑 𝑦𝑖 denotes the data values and 𝐸𝐷(𝑥, 𝑦) represents the Euclidean distance between the 

data points. 

The nearest values (𝐾) are selected based on the shortest distance between the missing value and the 

instance. To replace the missing values, the obtained nearest values are computed using the median 

imputation method, and it is formulated the equation (2) is given as, 

𝑋̂𝑖𝑗 = 𝑚𝑒𝑑𝑖𝑎𝑛(𝑥1, 𝑥2, … , 𝑥𝑘)     (2) 

Here, 𝑥1, 𝑥2, … , 𝑥𝑘 represents K nearest neighbor indices. 

After replacing the missing values, the min-max technique is employed for data normalization. The 

min-max technique transforms the data based on the fixed range with [0,1]. This process is formulated 

the equation (3) is given as, 

𝑥 = 𝑦 +  
(𝑥− 𝑥𝑚𝑖𝑛)(𝑧−𝑦)

𝑥𝑚𝑎𝑥− 𝑥𝑚𝑖𝑛
     (3) 

Here, 𝑎̃ refers to the normalized value, 𝑥𝑚𝑎𝑥 𝑎𝑛𝑑 𝑥𝑚𝑖𝑛 represents the maximum and minimum value, 

and 𝑦 𝑎𝑛𝑑 𝑧 refers to the scaling factors that range between [0,1]. 

After data is normalized, the SMOTE method resolves the class imbalance issues. SMOTE enhances 

the overlapping of classes in the normalized data by generating synthetic samples for the majority 

classes, which balance the class distribution. The SMOTE selects a K-nearest neighbor point for each 

majority class instance. The synthetic values are generated using the KNN, and a new data value is 

generated along with the line segment. The difference is calculated between the majority class instances, 

(𝑥𝑖) and the nearest neighbor (𝑥𝑖,𝑗) are formulated the equation (4) is given as, 
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𝑑𝑖𝑓𝑓 = 𝑥𝑖,𝑗 − 𝑥𝑖     (4) 

Here, 𝑥𝑖 refers to the majority class instance and 𝑥𝑖,𝑗 refers to the nearest neighbor. The random 

number is generated between the range 0 and 1 and is formulated the equation (5) is given as, 

𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = 𝜗 × 𝑑𝑖𝑓𝑓     (5) 

The synthetic sample (𝑥𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐) is generated by utilizing the interval instance value with the 

original class instance value, and it is computed. The equation (6) is given as, 

𝑥𝑛𝑒𝑤 = 𝑥𝑖 + 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙     (6) 

Here, 𝑥𝑛𝑒𝑤 refers to the generated point that lies on the line segment between 𝑥𝑖 𝑎𝑛𝑑 𝑥𝑖,𝑗 and 

𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 refers to the random number. 

4) CESN Model for Intrusion Detection 

The processed data are given to the CWO-CESN model to classify the attacks. CESN model is developed 

by integrating Convolutional Neural Networks with Echo State Networks. The CNN model is a Neural 

Network type incorporating convolutional layers, automatically extracting the input data's 

characteristics. The CNN model contains four components: convolutional layers, pooling layers, and 

flattening layers. The features are analyzed and extracted through the convolution layer (CL). The 

convolution operation retains the spatial relationship between the input data by capturing the features 

through the kernel function. This process is formulated the equation (7) is given as, 

𝑌𝑖𝑗 = (𝑥 ∗ 𝑊)𝑖𝑗 + 𝑏     (7) 

Here, 𝑥 refers to the processed data, 𝑊 refers to the weight, and 𝑏 refers to the bias term. 

The ReLU activation function is also employed to improve computing efficiency. The calculation 

process of the convolutional layer and the equation (8) is given as, 

𝑓 = 𝜑(𝜔𝑛  ⊕ 𝑥 +  𝑏𝑛)       (8) 

Here, 𝜔 represents weighing factors in kernels, 𝑛 represents the number of kernels in convolutional 

layers, x represents the vector of input series, and b represents bias. ⊕ indicates convolutional operation, 

and 𝜑 denotes the ReLU activation function.  

After the convolutional operation, the obtained features have large dimensions, so a pooling layer is 

applied to reduce the number of dimensions efficiently, performing maximum pooling operation. The 

equation (9) is given as, 

𝑌𝑃 =  𝑃𝑜𝑜𝑙𝑚𝑎𝑥 ( 𝑌𝑐)     (9) 

Here, 𝑌𝑃 represents the output of pooling layers and 𝑃𝑜𝑜𝑙𝑚𝑎𝑥 represents the maximum pooling 

function. After the pooling layers, the multi-dimensional feature maps are transformed into a                         

one-dimensional array using a flattened layer. 

After the flattening layer ESN model is integrated, the hidden RNN layers are replaced by the 

reservoir layer to improve the efficiency of computations. It comprises the input layer, reservoir layer, 

and output layer. The weights of both input and reservoir are randomly initialized, and the reservoir 

layer is initialized with very sparse connections to encourage multiple oscillatory dynamics. The output 

weights are calculated using linear regression. The N-dimensional initial states are given as x (0), and 

the D-dimensional input series are provided as 𝑈 =  (𝑢 (1), … , 𝑢 (𝑡), … , 𝑢 (𝑇)) 𝑇and L-dimensional 

output series is given as 𝑌 =  (𝑦(1), … , 𝑦(𝑡), … , 𝑦(𝑇))𝑇. The ESN model has three essential properties: 

temporal kernel, echo state property (ESP), and high training efficiency. The temporal kernel represents 

the reservoir layer's ability to change the input sequence into an echo state response with                                
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high–dimensionality, a nonlinear representation of the input series data. This process enables the ESN 

to gather the complex temporal dependencies. The reservoir transformation and the equation (10) is 

given as, 

𝑥(𝑡) = 𝑓(𝑊𝑟𝑒𝑠 𝑥(𝑡 − 1) + 𝑊𝑖𝑛 𝑢(𝑡))     (10) 

Here. 𝑢 (𝑡) € ℝ𝐷 refers to the vector of 𝐷-dimension at time 𝑡, 𝑥(𝑡) € ℝ𝐿 refers to the vector of                    

𝐿-dimension of the reservoir at time 𝑡, 𝑊𝑟𝑒𝑠 denotes the connection weight within the reservoir, 𝑊𝑖𝑛 

denotes connection weights from the input layer to the reservoir, and 𝑓 denotes the 𝑡𝑎𝑛ℎ activation 

function. 

 

Figure 2: Architecture of CESN Model 

Figure 2 represents the construction of the CESN model, which integrates an ESN with a CNN to 

form the CESN model, designed for predicting electricity demand (G) in a day. In this framework, the 

CNN component is responsible for feature extraction from the lagged series of G, capturing both 

common and local trends over varying periods. From CNN layers, features are extracted and then 

flattened before being given to ESN, which acts as a predictive regression operator for the G data. The 

ReLU activation function is employed in the CNN, while the Adam algorithm is utilized for back 

propagation, with the fully connected layer replacing ESN in their CESN model. 

ESP ensures the current state of the reservoir is the function of the recent input history. It makes a 

reservoir to prevent the earlier input series history information from fading. The ESP condition is 

formulated the equation (11) is given as, 

lim
𝑡→∞

𝑥(𝑡) =  𝑥𝑓𝑖𝑛𝑎𝑙      (11) 

Here, the influence of the initial state 𝑥(0) on the reservoir state 𝑥(𝑡)diminishes over time, and the 

state 𝑥(𝑡) is given by the recent input sequence 𝑢(𝑡). 

The high training efficiency of ESN comes from the output weights. 𝑊𝑜𝑢𝑡 to be trained through 

linear regression. The output is calculated and the equation (12) is given as, 

𝑦(𝑡) = 𝑓𝑜𝑢𝑡(𝑊𝑜𝑢𝑡𝑥(𝑡))     (12) 
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Here, 𝑊𝑜𝑢𝑡 denotes the weight connection from the reservoir to the output layer, and 𝑓𝑜𝑢𝑡 denotes 

𝑡𝑎𝑛ℎ activation function of the output layer. 

 CESN has combined the feature extraction from CNN with the temporal processing of ESN, with its 

high training efficiency and adaptability for IDS in IoT-assisted WSNs. To further increase the 

performance of the CESN model, the hyperparameters are fine-tuned by using CWO. The CWO model 

integrates the advantages of Chaos theory and Walrus optimizer (WO). The Chaotic maps from the chaos 

theory are used for population initialization, and the initiated population is fed to the Walrus optimizer 

to obtain the optimal weight and bias.  

The optimization begins with the candidate solution set (X), which is generated randomly and the 

equation (13) is given as, 

𝑋 = 𝐿𝐵 + 𝑟𝑎𝑛𝑑(𝑈𝐵 − 𝐿𝐵)    (13) 

Here, 𝐿𝐵 refers to the lower boundary of the variables, and 𝑈𝐵 refers to the upper boundary of the 

variable. 

WO consists of randomly constructed models that are replaced by chaotic maps during the 

initialization of the population. These maps effectively improve the process of exploitation and 

exploration. To avoid local optimum and increase diversity, this map provides the concept of 

unpredictability and randomness. The efficiency of these maps purely depends on the global exploration 

of the search area, which shows their effectiveness. 

The logical map is chosen as a chaotic map for this proposed model that serves as a metaphor for 

dynamic evolution. Logical maps are used to learn chaotic systems' complex behaviour and 

relationships. This logical map is used to understand and analyze the intricate behaviour of chaotic 

systems and produce insights for complicated relationships and mapping within the systems. This logical 

map is formulated and the equation (14) is given as, 

𝑥𝑛+1 =  𝑎𝑥𝑛( 1 −  𝑥𝑛)      (14) 

Here, 𝑎 denotes a parameter for defining the mapping behaviour, n represents the number of 

iterations, 𝑥𝑛 represents chaotic numbers and 𝑥𝑛+1 represents the state of the next iteration. Therefore, 

equation (15) is rewritten as, 

𝑞𝑗,𝑘 = 𝑙𝑘 + 𝑆𝑙(𝑢𝑘 − 𝑙𝑘), 𝑗 − 1,2,3, … , 𝐺, 𝑘 = 1,2,3, … , 𝑚 (15) 

Where, 𝑆𝑙 denotes 𝑙𝑡ℎ iteration chaotic sequence output. The chaotic map is used to initialize the 

positions to improve global search performance in the WO algorithm. 

Walruses are highly vigilant during foraging and roosting, with one or two acting as guards who 

patrol the area. If any unexpected situation arises, they promptly send out danger signals. In WO, these 

danger and safety signals are defined as follows. The equation (16-19) is given as, 

𝐷𝑎𝑛𝑔𝑒𝑟𝑠𝑖𝑔𝑛𝑎𝑙 = 𝐴 ∗ 𝑅       (16) 

𝛼 = 1 − 𝑐/𝑇       (17) 

𝐴 = 2 × 𝑎       (18) 

𝑅 = 2 × 𝑟1 − 1      (19) 

Here, Danger factors are represented by 𝐴 𝑎𝑛𝑑 𝑅, 𝛼 reduces from 1 to 0 within the iterations count 𝑐, 

and 𝑇 is the highest iteration. 

The safety signal in WO that reflects the danger signal is written and the equation (20) is given as, 

𝑆𝑎𝑓𝑒𝑡𝑦𝑠𝑖𝑔𝑛𝑎𝑙 = 𝑟2      (20) 
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Here, 𝑟1 𝑎𝑛𝑑 𝑟2 represents the random numbers that range between 0 𝑎𝑛𝑑 1. 

The exploration phase is represented as the migration process. During high-risk factors, walrus herds 

relocate for survival. During the exploration phase, the positions of the walruses are updated as follows 

and the equation (21-23) is given as, 

𝑋𝑖,𝑗
𝑐+1 = 𝑋𝑖,𝑗

𝑐 + 𝑀𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛𝑠𝑡𝑒𝑝    (21) 

𝑀𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛𝑠𝑡𝑒𝑝 = (𝑋𝑚
𝑐 − 𝑋𝑛

𝑐) ∙  𝛽 ⋅ 𝑟3
2   (22) 

𝛽 = 1 −
1

1+exp (−
𝑐−

𝑇
2

𝑇
×10)

     (23) 

Here, 𝑋𝑖,𝑗
𝑐+1 refers to the next position on the 𝑗𝑡ℎ dimension by the 𝑖𝑡ℎ walrus, 𝑋𝑖,𝑗

𝑐  refers to the current 

position, 𝑀𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛𝑠𝑡𝑒𝑝 represents the size of the walrus movement step, 𝑋𝑚
𝑐  𝑎𝑛𝑑 𝑋𝑛

𝑐  refers to the 

vigilantes, 𝛽 represents the control factor for the migration step, and 𝑟3 represents the random variable 

between 0 𝑎𝑛𝑑 1. 

The exploitation phase is represented as the reproduction of walrus herds. The walrus herds start 

breeding in low-risk environments. During reproduction, two main behaviors are analyzed: onshore 

roosting and underwater foraging. In Roosting behavior, the walrus population is divided into males, 

females, and juveniles, each having unique ways of updating their positions, including male walrus 

(MW) redistribution, Female walrus (FW) Position update, and Position update of juvenile walruses 

(JW). The male walrus (MW) redistribution uses the Halton sequence in the quasi-Monte Carlo method 

to update the position of the male walrus to ensure an evenly distributed population. 

The FW Position update is impacted by both a MW (𝑀𝑎𝑙𝑒𝑖, 𝑗) and the lead walrus (𝑋𝑏𝑒𝑠𝑡
𝑡 ). As 

iterations progress, the influence of the male diminishes while the leader's influence grows more robust. 

The equation (24) is given as, 

𝐹𝑒𝑖,𝑗
𝑐+1 = 𝐹𝑒𝑖,𝑗

𝑐 + 𝛼 ⋅ (𝑀𝑖,𝑗
𝑐 − 𝐹𝑒𝑖,𝑗

𝑐 ) + (1 − 𝛼) ⋅ (𝑋𝑏𝑒𝑠𝑡
𝑐 − 𝐹𝑒𝑖,𝑗

𝑐 )  (24) 

Here, 𝐹𝑒𝑖,𝑗
𝑐+1 refers to the new position for the 𝑖𝑡ℎ female walrus, 𝑀𝑖,𝑗

𝑐  and 𝐹𝑒𝑖,𝑗
𝑐  refers to the positions 

of the MW and FW on the 𝑗𝑡ℎ dimension. 

The juvenile walruses are in the edge population, vulnerable to predators such as killer whales and 

polar bears. As a result, they must frequently update their positions to evade potential threats. The 

equation (25-26) is given as, 

𝐽𝑢𝑣𝑒𝑛𝑖𝑙𝑒𝑖,𝑗
𝑐+1 = (𝑂 − 𝐽𝑢𝑣𝑒𝑛𝑖𝑙𝑒𝑖,𝑗

𝑐 ) ⋅ 𝑃     (25) 

𝑂 = 𝑋𝑏𝑒𝑠𝑡
𝑐 + 𝐽𝑢𝑣𝑒𝑛𝑖𝑙𝑒𝑖,𝑗

𝑐 ⋅ 𝐿𝐹       (26) 

Here, 𝐽𝑢𝑣𝑒𝑛𝑖𝑙𝑒𝑖,𝑗
𝑐+1 refers to the new position, 𝐽𝑢𝑣𝑒𝑛𝑖𝑙𝑒𝑖,𝑗

𝑐  refers to the current position, 𝑂 refers to 

the safety position, 𝑃 refers to the random number between (0,1) and also distress coefficient and 𝐿𝐹 

refers to the levy distribution random number. The levy movement is represented and the equation (27) 

is given as, 

𝐿𝑒𝑣𝑦(𝑎) = 0.05 ×
𝑥

|𝑦|
1
𝑎

       (27) 

Here, 𝑥 𝑎𝑛𝑑 𝑦 refers to the distributed variable, and it is represented as 𝑥 =  𝑁 (0, 𝜎𝑥
2) and 𝑦 =

 𝑁 (0, 𝜎𝑦
2). The equation (28) is given as, 
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𝜎𝑥 = [
Γ(1+𝛼) sin(

Πα

2
)

Γ(
1+𝛼

2
)𝛼2

(𝛼−1)
2

]

1

𝑎

, 𝜎 𝑦 = 1, 𝛼 = 1.5     (28) 

Here, 𝜎 𝑥 and 𝜎 𝑦 are the representation of standard deviations. 

The Foraging behavior in the exploitation phase includes fleeing behavior and gathering behavior. 

The fleeing behavior represents the attacks walruses face during underwater foraging from natural 

predators. In response to danger signals from their peers, they quickly flee their current location. This 

behavior typically occurs in the later iterations of the Walrus optimization process, where introducing 

some perturbation to the population aids in global exploration. The equation (29) is given as, 

𝑋𝑖,𝑗
𝑐+1 = 𝑋𝑖,𝑗

𝑐 ⋅ 𝑅 − |𝑋𝑏𝑒𝑠𝑡
𝑐 − 𝑋𝑖.𝑗

𝑐 | ⋅ 𝑟4
2     (29) 

Here, |𝑋𝑏𝑒𝑠𝑡
𝑐 − 𝑋𝑖.𝑗

𝑐 |represents the difference between the present walrus and the best walrus, 𝑟4 shows 

a random variable that lies in the range between 0 𝑎𝑛𝑑 1. 

When engaging in gathering behavior, walruses work together to find food, move in with the other 

walruses in the group, and provide position data that helps the herd determine the sea area with high 

food availability. This process and the equation (30-34) is given as, 

𝑋𝑖,𝑗
𝑐+1 = (𝑋1 + 𝑋2)/2       (30) 

𝑋1 = 𝑋𝑏𝑒𝑠𝑡
𝑐 − 𝑎1 × 𝑏1 × |𝑋𝑏𝑒𝑠𝑡

𝑐 − 𝑋𝑖.𝑗
𝑐 |    (31) 

𝑋2 = 𝑋𝑠𝑒𝑐𝑜𝑛𝑑
𝑐 − 𝑎2 × 𝑏2 × |𝑋𝑠𝑒𝑐𝑜𝑛𝑑

𝑐 − 𝑋𝑖.𝑗
𝑐 |   (32) 

𝑎 = 𝛽 × 𝑟5 − 𝛽       (33) 

𝑏 = tan (𝜃)        (34) 

Here, 𝑋1𝑎𝑛𝑑 𝑋2 are two weights that affect the gathering behavior of walruses, 𝑋𝑠𝑒𝑐𝑜𝑛𝑑
𝑡  refers to the 

position which shows other walrus the present iterations, 𝑎 𝑎𝑛𝑑 𝑏 refers to the coefficients of gathering, 

𝑟5 refers to the random variable that ranges between 0 and 1. 

Algorithm 1. CWO-CESN  

1. The parameters are initialized 

2. The population is initialized by using a chaotic map 

3. The fitness value is calculated for each solution 

4. While 𝑐 ≤  𝑇 

5. // Exploration Phase (Migration Process) 

a. For each walrus i in the population, DO: 

i. If danger signal detected: 

1. Update walrus position: 

ii. End if 

6. // Exploitation Phase (Reproduction Process) 

i. If the walrus is male: 

1. Redistribute male walruses using the Halton sequence 

2. Update male walrus position based on uniform distribution 

ii. Else if the walrus is female: 

1. Update female walrus position influenced by male and leader  

iii. Else, if the walrus is juvenile, then: 

1. Update juvenile walrus position to evade predators 

iv. End if 
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               a. End for 

7. //Foraging Behavior in the Exploitation Phase 

i. If a danger signal is detected during foraging: 

1. Fleeing behavior to avoid predators 

ii. Else  

iii. Gathering behavior for cooperation during foraging 

iv. End if 

              a. End for 

              b. Update the best solution based on fitness evaluation 

8. End While 

9. The optimal solution and weight and bias are returned 

10. End 

4 Performance Evaluation 

The CWO-CESN model is evaluated, and the performance is analyzed using metrics, including 

accuracy, precision, recall, F-score, and processing time (PT). The proposed CWO-CESN is compared 

with the existing models, and the performance is analyzed for the three datasets, including NSL-KDD, 

WSN-DS, and IoT-23 datasets. 

Table 2: Comparison of CWO-CESN with the Existing Models for the NSL-KDD Dataset 

Methods Dataset Accuracy 

(%) 

Precision 

(%) 

Recall (%) F-score  

(%) 

FPR 

(%) 

FNR 

(%) 

ECRF [12] NSL-KDD 97.17 97.32 97.02 95.92 14.8 15.75 

CNN [17] NSL-KDD 97.01 97 94.09 95.50 11.2 11.81 

FA-ML 

[19] 

NSL-KDD 96.42 94.40 95.25 95.42 15.3 10.11 

CL-SKD 

[25] 

NSL-KDD 97.55 97.50 97.55 97.49 10.7 9.76 

CWO-

CESN 

NSL-KDD 99 98.89 98.77 98.82 6.51 7.7 

Table 2 demonstrates the comparison results with the existing methods for the NSL-KDD dataset. 

The CWO-CESN model increased accuracy by 1.83%, 1.99%, 2.58%, and 1.45%, precision increased 

by 1.57%, 1.89%, 4.49%, and 1.39%, recall increased by 1.75%, 4.68%, 3.52%, and 1.22%, and F1-

score increased by 2.9%, 3.32%, 3.4%, and 1.33%, increased FPR by 8.29%, 4.69%, 8.79%, and 4.19%, 

increased FNR by 8.05%, 4.11%, 2.41%, and 2.06% for ECRF, CNN, FA-ML, and CL-SKD models. 

Table 3: Comparison of CWO-CESN with the Existing Models for the WSN-DS Dataset 

Methods Dataset Accuracy 

(%) 

Precision 

(%) 

Recall (%) F-Score 

(%) 

FPR 

(%) 

FNR 

(%) 

BCOA-MLID [9] WSN-DS  97.91 94.52 94.54 94.52 14.95 10.4 

Bi-GRU-AE [13] WSN-DS  99.34 99.34 99.34 99.34 15.67 13.8 

FL-SCNN-Bi-

LSTM [20] 

WSN-DS  98.7 98.8 98.6 98.6 13.7 11.53 

ML-SMOTE-

TomekLink [21] 

WSN-DS  98.80 98.81 98.79 98.8 11.67 8.82 

CWO-CESN WSN-DS  99.5 99.6 99.6 99.6 7.54 6.53 

Table 3 compares the results with the existing methods for the WSN-DS dataset. The CWO-CESN 

increased accuracy by1.59%, 0.7%, 0.8%, and 0.16%, precision increased by, 5.08%, 0.79%, 0.8%, and 

0.26% recall increased by 5.08%, 0.81%, 1%, and 0.26%, and F1-score increased by 5.08%, 0.8%, 1%, 
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and 0.26%, increased FPR by 7.41%, 4.13%, 6.16%, and 8.13%, increased FNR by 3.87%, 2.29%, 5%, 

and 7.25% BCOA-MLID, ML-SMOTE-TomekLink, FL-SCNN-Bi-LSTM, and Bi-GRU-AE models. 

Table 4: Comparison of CWO-CESN with the Existing Models for the IoT-23 Dataset 

Methods Dataset Accuracy 

(%) 

Precision 

(%) 

Recall (%) F-Score 

(%) 

FPR 

(%) 

FNR 

(%) 

CNN-LSTM 

[150] 

IoT-23  98.80 98.67 98.5 98.6 10.6 13.9 

1D-CNN-

LSTM [22] 

IoT-23  98.75 98.75 98.75 98.75 15.95 17.3 

Ensemble 

model [16] 

IoT-23  98.9 98.83 98.68 98.02 13.5 15.7 

EBWO-HDLID 

[24] 

IoT-23  98.35 84.85 80.95 82.79 12.4 14.4 

CWO-CESN IoT-23  99.8 99.6 99.7 99.6 8.4 9.2 

Table 4 compares the results with the existing methods for the IoT-23 dataset. The CWO-CESN 

increased accuracy by 1.05%, 0.9%, 1.45%, and 1%, precision increased by 0.85%,0.77%, 0.93, recall 

increased by 0.85%, 1.02%, 18.75%, and 1.2%, and F1-score increased by 0.85%, 1.58%, 16.84%, and 

1% for 1D-CNN-LSTM, Ensemble model, EBWO-HDLID, and CNN-LSTM models. 

Table 5: Processing Time Comparison 

Dataset No-of 

samples 

Training 

samples 

Testing 

samples 

No of 

features 

Processing time 

(s) 

NSL-

KDD 

125973 88181 37792 42 97.12 

WSN-

DS 

374661 262262 112311 19 137.45 

IoT-23 48003 33602 14401 58 45.02 

Table 5 represents the processing time for the NSL-KDD, WSN-DS, and IoT-23 datasets, along with 

the total samples, training samples, testing samples, and several features. The results showed that the 

proposed CWO-CESN model significantly reduces the overall processing time for all three datasets. The 

accuracy, precision, recall, F-score, FPR, and FNR values also show that the model has higher detection 

rates than the compared models. The utilization of the hybrid DL approach of CESN has enhanced the 

detection rate by learning the deep feature patterns, and the processing time is also reduced by the 

training optimization of CESN using the CWO algorithm. 

5 Conclusion 

The developed CWO-CESN model significantly improves the Intrusion detection system (IDS) for WSN 

and IoT networks, addressing the critical challenges in network security. The model employs a process 

that includes a data pre-processing phase, utilizing KNN imputation for missing values and Min-Max 

normalization for scaling. At the same time, the SMOTE method reduces class imbalance issues, 

ensuring high-quality data for intrusion detection. The hybrid CESN model efficiently gathers network 

traffic's spatial and temporal dynamics and allows for detecting complex patterns and anomalies. The 

CNN component excels in pattern recognition, while ESN efficiently models temporal dependencies 

with computational efficiency. The CWO algorithm optimizes the hyperparameters of the CESN model, 

leveraging the strengths of chaos theory and the Walrus optimizer to enhance detection accuracy. This 
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hyperparameter tuning process enhances the model's generalization ability on different attacks. The 

proposed CWO-CESN model has been evaluated by utilizing benchmark datasets, NSL-KDD,                 

WSN-DS, and IoT-23, attaining accuracy rates of 99%, 99.5%, and 99.8%, respectively, for detecting 

various attacks. The results demonstrate the model's robustness and potential for real-time intrusion 

detection in WSN and IoT networks. The possibility of including more new attack patterns will be 

examined in the future. Additionally, the feasibility of further reducing the training time will be 

investigated. 
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