
ISSN: 2093-5374 / E-ISSN: 2093-5382

92

Impact of Critical Success Factors on Productivity Gain during

Automation Testing

S.M. Bindu Bhargavi1, V. Suma2*, and R. Vijaya Arjunan3*

1Assistant Professor, Information Science and Engineering Department, Dayananda Sagar College

of Engineering, Bangalore, Visvesvaraya Technological University, Belagavi, India.

bindu.sm@gmail.com, https://orcid.org/0000-0003-2700-7985

2*Professor, Department of Computer Science and Design, Dayananda Sagar College of

Engineering, Bangalore, Visvesvaraya Technological University, Belagavi, India.

hod-csd@dayanandasagar.edu, https://orcid.org/0000-0003-1942-6741

3*Additional Professor, Department of Computer Science and Engineering, Manipal Institute of

Technology, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India.

vijay.arjun@manipal.edu, https://orcid.org/0000-0002-1402-6573

Received: March 18, 2024; Revised: June 06, 2024; Accepted: July 15, 2024; Published: September 30, 2024

Abstract

Software testing, a linchpin of quality assurance in software development, encompasses both manual

and automation approaches. While manual testing ensures meticulous scrutiny, automation

accelerates efficiency, reducing time and costs in dynamic landscape of software development. This

research investigates the impact of critical success factors on productivity gain in software testing,

with a focus on automation, within CMMI Level 5 companies. Drawing from a dataset comprising

thirty real-time projects spanning banking, retail, and industrial applications, study explores

dynamics of software development under agile and waterfall models. Interviews with developers

and testers reveal insights into key aspects influencing productivity, including skills, experiences,

and training.

Emphasizing the need for strategic automation in projects subject to changes and maintenance, the

research analyzes over thirty projects, scrutinizing variables such as manually designed test cases,

execution time, and subsequent automation of test cases. Strategic selection of test cases for

automation emerges as a cost-efficient practice. Results highlight a correlation between manual and

automated test cases, indicating productivity gains. Research introduces a productivity gain metric,

showcasing a break-even point where automation significantly reduces testing time. Overall, the

findings offer a comprehensive understanding of software testing within CMMI Level 5, guiding

organizations toward efficient automation practices and improved productivity.

Keywords: Software Test Automation, Manual Testing, Success Factors, Productivity Gain.

Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications (JoWUA),
volume: 15, number: 3 (September), pp. 92-108. DOI: 10.58346/JOWUA.2024.I3.007

*Corresponding author: 2*Professor, Department of Computer Science and Design, Dayananda Sagar College

of Engineering, Bangalore, Visvesvaraya Technological University, Belagavi, India; 3*Additional Professor,

Department of Computer Science and Engineering, Manipal Institute of Technology, Manipal Academy of Higher

Education (MAHE), Manipal, Karnataka, India.

https://orcid.org/0000-0003-2700-7985
https://orcid.org/0000-0003-1942-6741
mailto:vijay.arjun@manipal.edu

Impact of Critical Success Factors on Productivity Gain during

Automation Testing

 S.M. Bindu Bhargavi et al.

93

1 Introduction

Software testing is the process of confirming the functionality and quality of the software product. The

testing process is carried out for evaluating the software according to requirements specified to check

for any missing requirements, errors, faults and bugs. Testing facilitates early identification and

detection of bugs as it is necessary to reduce the financial losses. This is supported by the reports from

National Institute of Standard Technology (NIST) which states that the impact of software testing takes

around 4.9 hours to fix the bugs identified during coding or unit testing in comparison to the bug

identification after the product release or product usage, taking approximately 15.3 hours (Planning,

2002) to fix the bug.

In the current era, most software development processes are based on agile methodology making a

transition from the traditional waterfall model. While testing is carried out as the last step of software

development in waterfall model, testing is carried out throughout the software development process in

the agile methodology of software development. Testing is performed either manually or by automation

or both. Testing when carried out manually can be slow, expensive and error prone requiring an extra

skill set of the testers. To overcome these drawbacks automated testing has been employed mainly to

achieve faster execution of test cases with minimal or no human intervention. According to Global

Market Insights, the rate of using test automation over manual testing in the software development

market will increase by more than 16% by the end of 2027 (Verified Market Research). Test automation

is more suitable to speed up the testing process covering a greater number of test cases and execution of

similar test cases multiple times facilitating in faster delivery of products/release of the products.

In the case of incremental software models and agile software models where the software is deployed

in several iterations to the user, performing testing on each iteration is a must. Testing when performed

manually utilizes a lot of time and resources along with the extra skill set requirements from the testers.

A more suitable solution for this is to perform testing through automation. Incremental development in

software is carried out such that with the addition of each new feature or configuration change, core

functionality of the software should remain the same without any deviations. This may require the need

for regression testing to ensure there are minimal or no deviations from the major functionalities of the

software (Wiklund et al., 2017). It has been observed from recent studies that an average of 13 hours is

being spent on debugging and fixing software bugs. Automation testing offers better and early

identification of defects in the software, facilitating fixing the bugs or defects at the early stage of

software development in a faster rate, which substantially contributes towards efficient management of

cost and other resources of the software (Ferdiansyah et al., 2023).

Automation testing requires specific skillset of the testers and use of suitable tools for the generation

of test cases making it expensive when compared to manual testing. Test automation when carried out

under the influence of favorable factors can facilitate in achieving better automation gain in terms of

cost, time and quality. So, it is important to identify and understand the factors that influence automation

testing. The contribution of the identified factors to automation gain must be further evaluated to

understand the impact and effectiveness these factors can have on automation testing. The proposed

work performs the evaluation of identified factors with the introduction of a metric termed as

productivity gain to measure the effectiveness of automation testing. The proposed metric also emphasis

the break-even condition on which automation testing can be performed with the automation gain in

terms of true Return on Investment (ROI) (Offutt, 2023).

The organization of the paper is as follows: Section 1 provides the role of software testing in software

engineering, along with emphasizing on the role of automation testing in software testing. Importance

Impact of Critical Success Factors on Productivity Gain during

Automation Testing

 S.M. Bindu Bhargavi et al.

94

of regression testing in software development and the reasons for why regression is a suitable candidate

for automation has been analyzed. Section 2 provides an insight into the applications of automation

testing and the dependency of the current real-world applications on automation testing. The section also

covers the process carried out for automation testing, widely used tools and corresponding details about

the same. Section 3 of the proposed work gives a detailed methodology followed right from the data

collection stage to data analysis stage along with the process followed for identification of suitable

factors for calculation of productivity gain. Section 4 briefs about the comparison between different

software projects considered for productivity gain calculation with necessary results. Section 5 gives an

overview of the statistical analysis carried out so far followed by conclusion.

2 Automation Testing

Automation testing is a testing technique performed to ensure better quality software with the use of

skilled testers and specialized software tools. Though automation testing is expensive compared to

manual testing, it is widely used as automation testing provides faster bug detection, more test coverage,

faster results in less time, better documentation of test results along with minimal or no human

intervention. Automation testing is performed when there is need for repetitive execution of specific test

suites to ensure no deviations from the functionality of the software, when the number of test cases to

be executed is large, when optimal test coverage is to be achieved and in complex scenarios.

1) Automation Process

Automation testing is started by understanding and defining the scope of the software under development

based on the initial requirements followed by feasibility check. Once feasibility check is cleared – based

on the application under development, automation design is generated which includes tool selection and

test plan design. This is followed by a generation of test scripts - a test script is the composition of a set

of instructions describing the state of the application, actions corresponding to main functionality of the

application followed by expected results. Test scripts are designed to be simple, reusable and

independently executable as this simplifies the process of debugging easier. Similar test scripts can be

coupled together to form a test suite where a collection of test cases can be executed at once with minimal

human intervention. Test cases related to features which are subject to frequent changes are not suitable

for automation - since every change requires changes to be made in the test script regularly. Test cases

designed manually which are unlikely to change are best suitable for generation of automation test

scripts - through an application specific testing tool. Test scripts are executed with the generation of test

reports. An automation test report is composed of test objectives, a comprehensive defect report, testing

technique employed and features of the testing tool used along with details of test coverage. The report

also comprises the overall execution time, time taken exclusively to run each test script, number of test

cases executed, number of test cases passed, failed and not executed. Further examination of the test

reports facilitates the identification of bugs / defects in the system under test.

Automation testing is expensive as it requires special programming and scripting skill set of the

testers, exclusive tools for performing automation, and specialized frameworks with respect to

underlying application. Automation testing is further not suitable in scenarios which are ad-hoc and

require human intervention for better test cases. But automation testing is best suitable in case of

regression testing to check for the integrity of the functions performed by the software. It is also

advantageous to use automation testing in Continuous Integration, Continuous Deployment workflow

to ensure the validity of the code during continuous development of the software. Since automation

testing provides timely validation of functionality of the software, it is used in real-time applications like

Impact of Critical Success Factors on Productivity Gain during

Automation Testing

 S.M. Bindu Bhargavi et al.

95

web development, mobile applications, gaming, financial and healthcare applications. Other advantages

of automation testing include delivery of quality software with better defect management in a timely

manner, optimal code coverage with better Return on Investment.

2) Tool Usage during Automation Testing

1. To deliver quality software, software engineers confirm that the software is tested at a faster rate

by appropriate testing tools and testing techniques. Testing is important as it costs around $59.5

billion to the US economy annually according to the National Institute of Standards and Technology

(Jones, 2011). Automation tools and frameworks are designed to support various phases of software

development, software management and faster execution of the test scripts and documentation of

the test results for further analysis. Automation test cases are derived from manual test cases by

following a systematic procedure of identifying the test cases which consume lot of time and

resources during manual testing, test cases which are repetitive in nature – especially in case of

regression testing or in case of complex applications. To support this many automation tools are

currently in use which are either open source or commercial in nature. Further, not all the manual

test cases are suitable candidates for automation testing. The decision for automation also depends

on the underlying application, development framework of the application, testing technique used,

automation tools used, and test strategy followed by the application (Automated Software Testing).

Automation testing tools can be categorized based on the artifact being tested which is: unit testing,

functional testing, code coverage, test management and performance testing (Umar & Zhanfang,

2019; Myrria De Albuquerque et al., 2023; Riola, 2023). Unit testing tools are used to check for

the correctness of the units or methods in the code structure by commonly used tools like JUnit,

JMockit etc. When testing is performed to check the compliance of the output obtained with respect

to the requirements specified then functional testing is performed by tools like Selenium, HP

QuickTest Professional and many more. Tools like Cobertura, PITest etc are used for checking the

number of lines of code, statements or blocks with respect to code coverage testing. When testing

is performed with respect to each phase of testing life cycle, then the usage of Test Management

tools is more effective - which are Test Link, QA Complete etc. Testing the software with respect

to non-functional requirements of the software is termed as performance testing which uses tools

like JMeter, HP LoadRunner etc. Extensive studies have been undertaken on testing tools, their

selection and efficient usage as testing tools play a vital role in test automation.

3 Literature Survey with Gap Identification

Automation testing has been a critical part of the software testing industry with its widespread

application in software development. Automation testing is expensive compared to manual testing due

to the initial investment on automation tool, training for the testers and exclusive usage of automation

framework. Automation testing is employed with the main aim of reducing the test effort with a better

return on investment (Oleksandr et al., 2024). To reduce time, cost and effort several factors have been

identified which may contribute towards increasing the efficiency of testing. In this regard, a detailed

literature survey has been undertaken to understand various factors contributing towards better

automation testing and their effectiveness in testing. The study of existing system has provided a clear

overview based on the identification of factors contributing to better automation, software development

frameworks used, code coverage and its impact along with several other factors.

Impact of Critical Success Factors on Productivity Gain during

Automation Testing

 S.M. Bindu Bhargavi et al.

96

1) Factors Directly Contributing towards Better Automation

A detailed literature survey has been carried out in where the authors have successfully identified the

factors that are hindering the process of automation testing to be effective. The dataset considered for

the survey included publications and journal databases with major findings on factors which act as a

barrier for better automation. The factors varied from behavioral effects, business and planning, skills,

test system and system under test. Behavioral effects dealt with the influence of the organization culture,

motivation, expectations and behavior impacting the outcome of the project undertaken. Very high

expectations from the organization and process deviations are not suitable when test automation is used.

The implementation of automation testing would often require the testers to be well versed in testing the

software, developing the software along with extensive knowledge of the automation tools. To perform

automation, the test system must be able to provide an environment composing suitable hardware,

necessary automation tools and simulators and other software tools (Jayasree & Baby, 2019). So, the

testers must ensure all the required criteria is met before performing test automation. Another major

issue with automation testing is with respect to platform limitations caused by different operating

systems with different configurations, varied coding languages and platforms. The factors identified here

are purely non - technical but still have an impact on automation testing.

A systematic literature survey has been carried out in for the identification of vital factors influencing

test automation in Agile-based software development (Butt et al., 2023). The factors identified range

from selection of test tools, skills of the testers, test environment, use of regression testing and many

more. This proposed work used Factor Contribution Analysis (FCA) for the determination of the most

prospective factors contributing towards successful test automation. The FCA has been employed under

five different categories related to software under test, test system, tests being performed, human and

organizational influences and cross - cutting approaches (Riola, 2023). The proposed conceptual model

facilitated the testers in better decision making and risk management during testing. Though many

factors were identified for successful automation, their impact in terms of Return on Investment has not

been incorporated in the existing work.

2) Different Software Development Approaches

The authors in (Kumar & Mishra, 2016) have taken several case studies following an incremental

development approach into consideration for analyzing the impact of automation on cost, quality and

time. The impact of cost is calculated by the summation of manual test effort and total software testing

effort with respect to all versions of the software (Yang et al., 2019). Quality of the software can be

determined in terms of attributes like functionality, reliability, maintainability and several secondary

attributes. The impact of time on test automation can be determined by considering the development

time and several other factors. Since the factors considered have a positive impact on the software

quality - it is hence effective to use automation testing when compared to manual testing.

The implementation of machine learning techniques for the reduction of cost and errors has been

proposed in (Braga et al., 2018) where the generation of test oracles is done in an automated manner.

Since manual testing is error-prone and time consuming, developers often tend to use automation testing

to ensure delivery of products within time constraints. This is achieved by employing machine learning

techniques for the generation of test oracles which can exclusively distinguish between correct and

incorrect behavior of the software (Leu & Tjoa, 2014). As an improvement of the current version, the

authors in (Hershkovich et al., 2021) have implemented a suitable tool for the generation of test oracles

with the use of a fault prediction model. The advantage of this model is its capability to detect more

bugs than compared to coverage-oriented approach (Hemmati, 2015). The proposed model named

Impact of Critical Success Factors on Productivity Gain during

Automation Testing

 S.M. Bindu Bhargavi et al.

97

QUADRANT is capable of test case generation in case of small and simple software components. The

model could easily eliminate a huge number of false positive test cases. The advantage of QUADRANT

is its capability of identifying bugs with minimal number of test cases generated. This approach used

supervised learning algorithms and assigned scores for components to be tested. Once the scores reached

the maximum limit, the component was removed from the sorted components list and further generated

tests for components by using the test generation tool (Automated testing). Test cases generated by this

technique were relatively less in comparison with the large number of bugs identified thereby facilitating

in the reduction of the total test effort.

3) Code Coverage and Cost Dependency

The main objective of any testing technique is to achieve maximum code coverage with minimum

number of test cases time and cost effective manner. But maximum code coverage does not always

guarantee the detection of all the bugs present in the coding software. Authors in (Perera, 2020) have

proposed Search based Software Testing techniques with the implementation of defect prediction

algorithms for better prediction of bugs. The defect prediction algorithms are implemented based on

Genetic Algorithms which make use of search heuristics for better prediction of defects. Further

predicting the severity of bugs in very large software applications / systems has been proposed in where

effective bug management has been introduced with the classification and prioritization of the identified

bug using Machine Learning models (Hamouri et al., 2023). Evaluation of the models has been

performed with accuracy ranging from 93% to 95%.

There is a wide range of usage of automation testing as it consumes less time and cost. Though the

initial investment is more, with each run automation testing can guarantee a return on investment. The

authors in (https://1902software.com/blog/cost-of-not-testing-software) (Kamaraj et al., 2023) have

been able to deduce the dependency of cost of testing with respect to number of test cases executed

manually and through automation. With the usage of testing tools, in automation testing there is a

possibility of low code visibility - resulting in low code coverage and thereby drastic reduction in fault

detection. The authors have also emphasized the key software components which can be easily

automated: background processes, database entry, template operations, validation messages, checking

the correctness of data search and many more.

Wide range of real time applications has been considered to understand the severity of software

testing and importance of automation in software testing. In this regard, an application working on

Google Android OS has been implemented in (Myrria De Albuquerque et al., 2023), with the use of

Compatibility Test Suite tool for testing the application developed. The product was tested both by

manual testers and through automation, with over 75% accuracy rate recorded for automation testing

while 37% accuracy rate for manual testers. The results obtained have been able to prove the importance

of automation testing over manual testing.

4) Minimizing Maintenance and Test Effort

Several approaches have been introduced over the years to ensure better quality software by performing

testing and inspection regularly however without considering effort reduction. In this regard, the authors

in (Elberzhager et al., 2012) proposed different areas eligible for effort reduction by performing a survey

on over 4020 research articles of which final 144 articles were suitable for classification of existing

approaches. The five areas which contribute towards better test effort reduction are: use of different test

strategies, test automation, quality assurance techniques before testing, techniques used for predicting

the defect prone areas and techniques used for reduction of test input. Test automation is the widely used

https://1902software.com/blog/cost-of-not-testing-software

Impact of Critical Success Factors on Productivity Gain during

Automation Testing

 S.M. Bindu Bhargavi et al.

98

approach for effort reduction (about 50%) where manual testing can be automated, with generation of

automated test reports by using test automation tools, thereby reducing overall testing time and manual

effort. Predicting techniques are used to predict the defect content and defect proneness - which provides

an estimation of expected defects and areas of expecting a defect. The test input reduction approach

considered the use of test case selection and prioritization approaches mainly employed in case of

regression testing on the optimized test suite to save the testing time and improve the efficiency of

testing. Quality assurance techniques have been less effective as they are performed before the testing

process through code inspections and reviews, which may assist in the identification of defects which

are less costly than compared to defects found at the later stage of testing. Deciding the test strategy is

dependent on the type of application built; the type of modular approach followed in the application and

hence can have less contribution towards effort reduction. The survey provided the different supporting

areas of effort reduction, along with emphasis on integration of quality assurance techniques and

prediction techniques for better test effort reduction.

Reduction of test effort in agile IT projects has been proposed by providing guidelines for minimizing

maintenance of test automation (Sebastian, 2023). Guidelines like usage of small and minimal code

snippets, loose coupling of the architectural components, with small unit interfaces that are suitable for

automation testing have been listed in this work. Following these guidelines is necessary mainly at the

maintenance phase, especially if regression testing is used. The analysis results here have shown the

impact on software maintenance that is caused due to changes in the requirements. Though a series of

guidelines have been listed here to minimize the maintenance effort, it is practically not possible to

implement the guidelines considering the other factors of software development.

5) Metrics Used

The process of software testing is measurable, and several metrics have been used for the same.

Commonly used metrics mean time between arrival of errors, density of errors, failure rate, test

execution productivity, defect density and many more. Each of these metrics is independent of each

other making it difficult for the evaluation of the software. A common, more homogeneous metric has

been proposed in (Khan et al., 2013) mainly for measuring the quality attributes like correctness,

reliability, flexibility, interoperability and usability. The new framework provided by the proposed work

suggested mean time to failure (MTTF) and failure rate (FR) as the commonly used metrics as it is more

suitable at different stages of testing. These metrics are the derivatives which include several other

metrics as a combination, thereby facilitating the measurement of many quality attributes. The proposed

work does not provide one suitable metric which can be used to measure the effectiveness of automation

testing in terms of productivity.

Test scripting techniques have been proposed in (Hanna et al., 2013) with the main aim of achieving

a high-quality system thereby reducing the test effort. Generation of the test scripts play a vital role in

increasing the efficiency of testing and this can be carried out by linear scripting technique, structured

and shared scripting technique, data - driven scripting technique, keyword-driven scripting technique

and the proposed scripting technique which considers clerical activity and intellectual activity used

during testing. When the automation scripts are generated through any of the scripting techniques, the

speed of generating the test suite is faster, with fewer errors and less time consuming compared to

manual testing.

With respect to the dataset collected, the software projects being considered are of the product and

application type following the waterfall and agile model of software development. The choice of

underlying model used is purely based on the aim and scope of the project under development. While

Impact of Critical Success Factors on Productivity Gain during

Automation Testing

 S.M. Bindu Bhargavi et al.

99

the traditional projects follow the waterfall approach, where development happens mainly on the

requirements given, which are subject to minimal changes (Royce, 1987), the agile based development

has been used for applications with the scope for incremental development (Fowler & Highsmith, 2001).

In agile - based systems, multiple processes within a project are run parallel to each other within every

development process or sprint. The type of development model selected will in turn have its impact on

the resource allocation which can be in the form of human resources, materials, financial resources and

time. Since many types of resources are involved, resource allocation is the major problem to be

addressed in the case of Agile System Development and to overcome this issue, Multi - Objective

Decision - Making approach has been proposed in (Kaur et al., 2023) as the solution. This approach has

been suitable for software development projects but is yet to be implemented for software testing and

software maintenance projects.

Extensive study of the existing research work has provided a detailed insight into the importance of

automation testing when compared to manual testing and the widespread use of automation testing in

current software applications (Rafi et al., 2012). Major work has been carried out with the main aim of

reducing the test efforts in terms of cost and time by using machine learning techniques in the generation

of test oracles or using machine learning techniques for prediction of bugs or achieving maximum code

coverage with minimum number of test cases along with the identification of maximum number of bugs.

To achieve a true Return on Investment there is an ardent need to consider factors which are secondary

but have an impact on increasing the productivity gain of the software projects. A detailed survey has

been carried out for the identification of factors which contribute towards increasing the productivity

gain (Bindu Bhargavi & Suma, 2022). The secondary factors identified are in terms of building a test

team with team members having exclusive training in test automation, effective tool selection with

respect to the underlying application, fixing a proper automation strategy, executing with respect to the

automation test plan and selecting of the right test cases for automation. These factors play a vital role

in achieving better automation thereby facilitating less cost, time and test effort.

4 Research Methodology

To obtain better understanding of the proposed work, sample data related to testing has been collected

from IT industries CMMI (Capability Maturity Model Integration) Level 5 companies. These are the

companies which have well defined processes that are effectively monitored and measured. Data related

to testing has been collected with respect to applications ranging from banking to web applications. Each

of these projects has been implemented using different technologies like JAVA,.NET framework, Cobol,

Mainframe etc.

1) Data Collection

The application model used for the projects are either waterfall model or agile model with a scope for

maintenance. Since each of these projects are real time IT applications - detailed insight into testing has

been obtained by interviewing the developers and testers. A developer in a traditional software project

plays a pivotal role in software development by identifying the key requirements from specification,

designing the software, implementation and installation followed by testing the project.

Projects developed with respect to the agile model, would require the developer to produce high

quality code by considering functional and non - functional requirements like readability,

maintainability, security and performance. Once the project is released to the end users, maintenance

and any further changes would require the project to be tested again before release. Projects with minor

Impact of Critical Success Factors on Productivity Gain during

Automation Testing

 S.M. Bindu Bhargavi et al.

100

builds have been considered with test cases being generated manually and through automation. The

projects are tested using regression testing techniques (Regression Testing?) and automation is

performed using tools like Selenium and QTP which are licensed and open-source tools.

Since it is cost efficient to automate all the test cases which are generated manually, there is need to

strategically select the test cases which are suitable candidates for automation. With every update or any

changes in the code, it is necessary to get the conformance on the functionality of the software to ensure

that there are no deviations in its functionalities or any errors after implementing the changes. To ensure

this a set of test cases pertaining to the core functionality of the software are to be run each time a

modification is done to the software. These are the primary set of test cases that are eligible for

automation. Also, test cases which do not undergo any changes even after multiple runs but are necessary

to check the functional, non - functional requirements are hence eligible for automation. When the

manual test cases take long duration for execution, they can still be automated so that the test cases can

be run in lights out mode as batch files without much intervention of the testers or requiring exclusive

skills of the testers for further execution. When the test cases are executed in lights out mode, testers

mainly ensure the execution of test cases associated with the essential functionalities of the project.

Test data collected with respect to over 30 projects are used for analysis and further derivation of

productivity gain is done.

The main objective of this paper is to understand the importance of time, cost and effort in software

testing. The proposed work also focuses on the importance of productivity gain with respect to software

testing, primary and secondary factors which contribute towards achieving a better productivity

gain - thereby reducing the time and cost spent on software testing ultimately gaining a better Return on

Investment.

5 Results and Discussion

Automation testing is performed by the developers to achieve a wider coverage to detect bugs and errors

during an early or later phase of development - thereby reducing the cost of failure, saving time during

regression testing, facilitating in improving the resource productivity. Testing data of around 30 projects

has been collected for analysis and estimation of productivity gain that can be achieved in testing. Test

data related to around 10 projects under product development, 10 projects related to banking application

and 10 projects related to retail, industrial application have been considered here. Since the applications

under consideration are subjected to changes during development and at later stages, there is an ardent

need for automating the test cases to ensure all the features of the software under development are intact

and maintainable over the life of the application. The projects considered are minor build projects where

the duration of project development ranges from 3 to 6 months. The projects undertaken with respect to

product development have been built based on waterfall model with Quick Test Professional (QTP) as

the testing tool (licensed). Projects considered under the banking sector have been developed using both

waterfall and agile framework mainly to support the real time requirements of the end users. The

automation tool used is Selenium which is an open-source tool. The test data contains details about the

number of test cases designed manually, time taken for execution of these test cases, number of test

cases automated which are derived from manually designed test cases, time taken for running the

automation script along with number of times executed. The data collected is analyzed to understand the

relation between time taken for manual testing and time taken for automation testing and deriving the

gain in productivity using the dependent factors.

Impact of Critical Success Factors on Productivity Gain during

Automation Testing

 S.M. Bindu Bhargavi et al.

101

1) Data Analysis

From the entire data set collected, data analysis is started by the identification of dependent and

independent variables. This is followed by understanding the relationship between the dependent

variables and factors contributing towards increasing the productivity gain (Bindu Bhargavi & Suma,

2022). The applications considered here are banking, retail; industrial/product-based applications which

are once developed and released to the customers may go through changes and maintenance over the

due course if it’s usage. This makes it necessary for the developer and tester to be aware of the underlying

technology with efficient knowledge about automation tools and associated scripting languages. Quota

sampling is performed for better analysis of data, where primary factors contributing towards the

calculation of productivity gain are identified. These factors include time taken for manual testing and

time taken for automation testing, number of cycles of execution and time taken for preparation of

automation scripts.

Designing a test strategy with a suitable test plan is always the best practice to be followed during

test automation. The selection of the test tool depends on the underlying knowledge about the

application, as it facilitates in designing optimal number of test cases with maximum coverage. Many

software testing tasks can be laborious and time-consuming to be done manually. In addition, a manual

approach is not always effective in finding certain classes of defects. Test automation offers the

possibility to perform these types of testing effectively. Figure 1 shows the number of test cases

generated manually v/s the number of test cases generated by the usage of automation tools. The number

of test cases generated depends on the type of project, number of developers and testers working on the

project, complexity of the project and the type of software development model used. The graph further

represents the functional equivalence that exists between the manual test cases and automated test cases,

since manual test cases provide a basis on which automation test strategies are designed, here, testing

tools are selected followed of the expected outcome. The pattern of manual and automation test cases

facilitates in the visualization of distribution of test cases within a test suite, which signifies that on an

average the number of manual test cases developed is 5 times the number of automation test cases that

is used during automation testing. Since the projects considered here are developed for business

purposes, the comparison between the manual and automation test cases is done on a common scale

irrespective of the product, banking and retail domains.

Figure 1: Number of Test Cases Generated Manually v/s Number of Test Cases Generated through

Automation: X Axis Denotes the Projects and Y Axis Denotes Number of Test Cases

Impact of Critical Success Factors on Productivity Gain during

Automation Testing

 S.M. Bindu Bhargavi et al.

102

The generation of automation test cases is done based on a detailed test strategy and suitable test

plan, to facilitate better regression testing. A detailed test plan further facilitates the tester and developers

towards building batch files for the execution of test cases with minimal or no human intervention. Such

batch files can be run in lights-out-mode where the essential and most critical test cases are run with less

test cycle time.

2) Identification of Defects

During manual testing, the test cases are generated by considering requirements specification, where

most of the boundary conditions or edge cases may not be taken into consideration. Automation testing

overcomes this condition by repetitive execution of test cases facilitating the detection of bugs at an

early stage of software development. Automation testing when used during regression testing works

even more effectively by keeping a check on the deviations caused with respect to existing functionality

of the software under development. Since automation testing can be documented, every logged detail

would in turn better detection and fixing of the bugs in the software. It is not good practice to automate

all the test cases that are generated manually as it is not economical and consumes a lot of time. Of all

the test cases available, test cases that are associated with the core functionality of the software are to be

automated to check for any deviations from the usual behavior of the software, over the due course of

usage and maintenance. Test cases which take longer execution time when manually executed are also

subject to automation so that the next run of the same test case does not require any human intervention

and can be executed successfully. Direct correlation existing between the critical factors are identified

and the relationship between them is analyzed for achieving better test automation measured in terms of

the metric termed as productivity gain.

3) Impact of the Critical Factors

Figure 2: Critical Success Factors Identified Contributing Towards Better Automation

Automation is termed to be better, when higher test efficiency and better productivity gain are achieved.

Testing efficiency is the average number of tests that can be run for an hour of tester time. It is the rate

at which specific testing techniques are used for revealing the bugs of the system or the underlying

application. Achieving better test effectiveness reduces the testing cost at a later stage along with

Better

Automation

Building a

dedicated team

Tool Selection

Automation

Plan

Awareness

about the

software

Selection of

Right Test cases

Automation

strategy

Impact of Critical Success Factors on Productivity Gain during

Automation Testing

 S.M. Bindu Bhargavi et al.

103

building customer satisfaction. This can be achieved by devising an automation plan that is most suitable

for the underlying application with a team of efficient developers and testers. The skillset of the

developers and testers also plays an important role in devising the test plan with an appropriate test

strategy corresponding to the different levels of testing applicable for the system/project under test.

Replacing manual testing with automation time can save the testing time and test effort represented in

terms of productivity gain. Along with improving productivity and efficiency, test automation also

enhances team spirit and provides the testers and developers with more time for improving the test plan

in a much more efficient manner. Critical Success Factors Identified Contributing Towards Better

Automation shown in Figure 2.

The major advantage of automating the test cases is that the process of testing can be easily repeated

with any changes to the software/application/project as the time spent on automation creation can

promise a better return on investment. Automated software testing can reduce the time to run repetitive

tests from weeks to hours. In the projects considered, the costs for manual testing can increase with each

new build but not in the case of automated tests. Though the initial cost of automation testing is high,

there is a gradual increase in the return on investment. This is a significant time-saving that translates

directly into cost savings. In this regard, a new metric to measure the effectiveness of automation testing

has been proposed termed as productivity gain: where reduction in the test effort can be achieved by a

better productivity gain. Since the identified critical factors have an impact on reducing the test effort,

productivity gain can be determined by the equation (1) is given as,

Productivity gain = (tm * n) – ((ta * n) – ts) (1)

Here, – tm is time taken to run a manual test script

– ta is the time taken to run an automation test script.

– ts is the time taken for writing the automation script

– n is the number of test cycles to be considered

The calculation of productivity gain has been carried out according to the proposed mathematical

model.

Figure 3: Productivity Gain Measurement v/s Manual Testing v/s Automation Testing

Impact of Critical Success Factors on Productivity Gain during

Automation Testing

 S.M. Bindu Bhargavi et al.

104

The results obtained when applied on the sample data are as represented in Figure 3. This graph

represents the correlation existing between the three primary variables used in productivity gain

calculation viz. time taken for manual testing, time taken for automation and time taken for automation

of the test scripts with respect to productivity gain.

Figure 4: Represents Correlation between

Time Taken for Running Automation Scripts

& Productivity Gain

Figure 5: Correlation between: Time

Taken for Manual Testing & Time Taken

for Automation

Figure 6: Correlation between: Time Taken

for manual testing & Time Taken for Running

Automation Scripts

Figure 7: Correlation between Time Taken

for Manual Testing and Productivity Gain

The primary analysis of the data set resulted in the identification of these primary variables, which

further must be evaluated and verified using correlation analysis to ensure the correctness of the selected

primary variables. While automating the test scripts, the time duration taken for scripting is more than

compared to execution of the automation scripts. So initially when the automation scripts are run, a

breakeven condition is achieved only when test automation is performed beyond the scripting time. Once

the breakeven condition is met, any number of automation scripts run will result in a reduction in the

time taken for automation resulting in productivity gain. With each release of the project version,

scripting time is reduced, increasing the productivity gain. Test automation is termed to be seamless

when the test scripts are run as batch files with minimal human intervention, executing the files in

lights-out-mode. The results of the correlation analysis performed are as represented in the graphs

represented by Figures.

Figure 4 represents the correlation existing between the time taken for running the automation scripts

and the productivity gain calculated with the coefficient value r = 0.067306. The value r represents a

Impact of Critical Success Factors on Productivity Gain during

Automation Testing

 S.M. Bindu Bhargavi et al.

105

very weak positive correlation existing between these two variables. Figure 5 represents the correlation

existing between the time taken for manual testing and time taken for automation testing with the

correlation coefficient value r = 0.590943. The value r represents a moderate positive correlation existing

between these two variables. Figure 6 represents the correlation existing between the time taken for

running the manual testing and time taken for execution of the automation scripts with correlation

coefficient value r = 0.681985379. The value r represents a moderate positive correlation existing

between these two variables. Figure 7 represents the correlation existing between the time taken for

manual testing and productivity gain with correlation coefficient value r = 0.606710453. The value

r represents a moderate positive correlation existing between these two variables.

Figure 8: Correlation between Time Taken for Automation and Time Taken for Running the

Automation Scripts

Figure 8 represents the correlation existing between the time taken for generation of the automation

scripts and time taken for execution of the automation scripts with correlation coefficient value

r = 0.887487. The value r represents a very strong positive correlation existing between these two

variables. Since correlation existing between the different combinations of variables is in the range of

0.6 to 0.8, the contribution of each of these variables in the calculation of productivity gain metric is

hence justified.

6 Conclusion

This research has delved into the realm of software testing, elucidating the nuanced significance of both

manual and automated approaches within the context of CMMI Level 5 companies. The findings

highlight the indispensable role of software testing as the linchpin of quality assurance in the software

development life cycle. By meticulously analyzing over thirty projects spanning diverse domains and

technologies, the study has illuminated the multifaceted nature of software testing. The projects'

adherence to both agile and waterfall models add layers of complexity, mirroring the real-world

challenges faced by modern development teams. The interviews with developers and testers have

unraveled crucial insights into the pivotal factors influencing productivity, emphasizing the need for a

harmonious blend of skills, experiences, and training. Automation, identified as a strategic necessity,

emerges not merely as a time-saving mechanism but as a linchpin for ensuring the integrity,

Impact of Critical Success Factors on Productivity Gain during

Automation Testing

 S.M. Bindu Bhargavi et al.

106

maintainability, and functionality of software throughout its lifecycle. The careful selection of test cases

for automation, highlighted in the research, shows a cost-efficient approach that accelerates efficiency

and minimizes human intervention. The introduced metric of productivity gain provides a quantitative

lens through which the efficacy of automation is measured. The findings unveil a significant break-even

point, signaling the juncture where automation substantially reduces testing time, contributing to

enhanced productivity. This revelation is not only pivotal for organizations aiming to optimize their

testing practices but also serves as a beacon for navigating the evolving landscape of software

development. In essence, the present study encapsulates the essence of software testing, elucidating its

critical importance in the pursuit of software quality. As the industry continues to evolve, these insights

provide a comprehensive understanding of the intricacies involved, guiding organizations towards

strategic decisions that optimize both time and costs in the pursuit of a more productive and efficient

software development process.

Competing Interests – No Competing Interests.

Funding Information – Not Applicable.

Author contribution - All authors contributed to the study of conception and design.

Material preparation, data collection and analysis were performed by Bindu Bhargavi S M and

Dr. Suma V.

e-search Involving Human and /or Animals – Not Applicable.

Informed Consent – Not Applicable.

Note: On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

[1] Automated Software Testing. https://www.test-institute.org/Automated_Software_Testing.php

[2] Bindu Bhargavi, S. M., & Suma, V. (2022). A survey of the software test methods and

identification of critical success factors for automation. SN Computer Science, 3(6), 449.

https://doi.org/10.1007/s42979-022-01297-5

[3] Braga, R., Neto, P. S., Rabêlo, R., Santiago, J., & Souza, M. (2018). A machine learning

approach to generate test oracles. In Proceedings of the XXXII Brazilian Symposium on Software

Engineering, 142-151.

[4] Butt, S., Khan, S. U. R., Hussain, S., & Wang, W. L. (2023). A conceptual model supporting

decision-making for test automation in Agile-based Software Development. Data & Knowledge

Engineering, 144, 102111. https://doi.org/10.1016/j.datak.2022.102111.

[5] Elberzhager, F., Rosbach, A., Münch, J., & Eschbach, R. (2012). Reducing test effort: A

systematic mapping study on existing approaches. Information and Software Technology,

54(10), 1092-1106.

[6] Ferdiansyah, D., Isnanto, R. R., & Suseno, J. E. (2023). Strategy Indicators for Secure Software

Development Lifecycle in Software Startups Based on Information Security Governance.

Journal of Internet Services and Information Security, 13(4), 104-113.

[7] Fowler, M., & Highsmith, J. (2001). The agile manifesto. Software Development, 9(8), 28-35.

[8] Hamouri, S. K., Shatnawi, R. A., AlZoubi, O., Migdady, A., & Yassein, M. B. (2023). Predicting

Bug Severity Using Machine Learning and Ensemble Learning Techniques. In IEEE 14th

International Conference on Information and Communication Systems (ICICS), 1-6.

https://doi.org/10.1109/ICICS60529.2023.10330494.

Impact of Critical Success Factors on Productivity Gain during

Automation Testing

 S.M. Bindu Bhargavi et al.

107

[9] Hanna, M., El-Haggar, N., & Sami, M. (2013). Reducing Testing Effort using Automation.

International Journal of Computer Applications, 81(8), 16-21.

[10] Hemmati, H. (2015). How effective are code coverage criteria?. In IEEE International

Conference on Software Quality, Reliability and Security, 151-156.

https://doi.org/10.1109/QRS.2015.30

[11] Hershkovich, E., Stern, R., Abreu, R., & Elmishali, A. (2021). Prioritized test generation guided

by software fault prediction. In IEEE International Conference on Software Testing,

Verification and Validation Workshops (ICSTW), 218-225.

[12] https://1902software.com/blog/cost-of-not-testing-software

[13] https://www.functionize.com/automated-testing

[14] https://www.guru99.com/regression-testing.html

[15] Jayasree, V., & Baby, M. D. (2019). Scientometrics: Tools, Techniques and Software for

Analysis. Indian Journal of Information Sources and Services, 9(2), 116–121.

[16] Jones, C. (2011). Software Quality in 2012: A Survey of the State of the Art. Nancook Analytics

LLC. http://sqgne.org/presentations/2012-13/Jones-Sep-2012.pdf.

[17] Kamaraj, K., Lanitha, B., Karthic, S., Prakash, P. N., & Mahaveerakannan, R. (2023). A

Hybridized Artificial Neural Network for Automated Software Test Oracle. Computer Systems

Science & Engineering, 45(2), 1837-1850. https://doi.org/10.32604/csse.2023.029703.

[18] Kaur, J., Singh, O., Anand, A., & Agarwal, M. (2023). A goal programming approach for

agile-based software development resource allocation. Decision Analytics Journal, 6, 100146.

https://doi.org/10.1016/j.dajour.2022.100146.

[19] Khan, M. S., Khan, N., Khan, M. A., & Javed, M. A. (2013). A New Approach for Reducing

the Testing Effort.

[20] Kumar, D., & Mishra, K. K. (2016). The impacts of test automation on software's cost, quality

and time to market. Procedia Computer Science, 79, 8-15.

[21] Leu, F.Y., & Tjoa, A.M. (2014). Guest Editorial: Emerging Software Reliability and System

Security Technologies. Journal of Wireless Mobile Networks, Ubiquitous Computing, and

Dependable Applications, 5(1), 1-3.

[22] Myrria De Albuquerque, A., Barbosa, H., Lancellotta, P., Santos, J., & Sousa, J. (2023).

Automating Android Rotation Vector Testing in Google's Compatibility Test Suite Using a

Robotic Arm. In Proceedings of the 8th Brazilian Symposium on Systematic and Automated

Software Testing, 54-63.

[23] Offutt, J. (2023). Test Automation: From Slow & Weak to Fast, Flaky, & Blind to Smart &

Effective. In IEEE Conference on Software Testing, Verification and Validation (ICST), 11-11.

https://doi.org/10.1109/ICST57152.2023.00009

[24] Oleksandr, K., Viktoriya, G., Nataliia, A., Liliya, F., Oleh, O., Maksym, M. (2024). Enhancing

Economic Security through Digital Transformation in Investment Processes: Theoretical

Perspectives and Methodological Approaches Integrating Environmental Sustainability.

Natural and Engineering Sciences, 9(1), 26-45.

[25] Perera, A. (2020). Using defect prediction to improve the bug detection capability of

search-based software testing. In Proceedings of the 35th IEEE/ACM International Conference

on Automated Software Engineering, 1170-1174.

[26] Planning, S. (2002). The economic impacts of inadequate infrastructure for software testing.

National Institute of Standards and Technology, 1(2002).

[27] Rafi, D. M., Moses, K. R. K., Petersen, K., & Mäntylä, M. V. (2012). Benefits and limitations

of automated software testing: Systematic literature review and practitioner survey. In IEEE 7th

International Workshop on Automation of Software Test (AST), 36-42.

https://doi.org/10.1109/QRS.2015.30
https://1902software.com/blog/cost-of-not-testing-software/
https://www.functionize.com/automated-testing
https://www.guru99.com/regression-testing.html
https://doi.org/10.32604/csse.2023.029703

Impact of Critical Success Factors on Productivity Gain during

Automation Testing

 S.M. Bindu Bhargavi et al.

108

[28] Riola, M. (2023). Test automation in video game development: Literature review and Sound

testing implementation. Master’s Degree Thesis.

[29] Royce, W. W. (1987). Managing the development of large software systems: concepts and

techniques. In Proceedings of the 9th International Conference on Software Engineering,

328-338.

[30] Sebastian, Ö. (2023). Software Test Automation: A qualitative study on optimizing maintenance

in test automation. Bachelor's thesis.

[31] Umar, M. A., & Zhanfang, C. (2019). A study of automated software testing: Automation tools

and frameworks. International Journal of Computer Science Engineering (IJCSE), 6(217-225),

47-48.

[32] Verified Market Research. https://www.netguru.com/services/market-research

[33] Wiklund, K., Eldh, S., Sundmark, D., & Lundqvist, K. (2017). Impediments for software test

automation: A systematic literature review. Software Testing, Verification and Reliability,

27(8), e1639. https://doi.org/10.1002/stvr.1639

[34] Yang, C. T., Chen, S. T., Lien, W. H., & Verma, V. K. (2019). Implementation of a

Software-Defined Storage Service with Heterogeneous Storage Technologies. Journal of

Internet Services and Information Security, 9(3), 74-97.

Authors Biography

S.M. Bindu Bhargavi, has been serving as an Assistant Professor in the Department of

Information Science and Engineering, Dayananda Sagar College of Engineering, Bangalore,

since July 2015. She has obtained her Master of Technology degree from Sri Venkateshwara

College of Engineering affiliated to Visvesvaraya Technological University in 2014. She has

published several research articles and book chapters in various International Conferences and

Journals. Her research interests include Software Engineering, Software Testing, Machine

Learning, Deep Learning, Cloud Computing and Discrete Mathematics.

V. Suma, has been serving as Vice Principal & Head, in the Department of Computer

Science and Design, Dayananda Sagar College of Engineering. She has been working in this

institution for the past 27 years. She has been recognized as a research supervisor under

Visvesvaraya Technological University and many other esteemed universities. She has

published several research articles and book chapters with around 1459 citation count. Her area

of research includes Software Engineering, Cloud Computing, Machine Learning, Deep

Learning, Data Mining, Internet of Things, Computer Vision and Image Processing.

R. Vijaya Arjunan, has been serving as an Additional Professor in the Department of

Computer Science and Engineering, Manipal Institute of Technology, Manipal Academy of

Higher Education, Manipal, since July 2010. During his tenure at Manipal Institute of

Technology, he was on deputation to the School of Engineering and IT, Manipal, Dubai

campus, from 2014 to 2017. He obtained his Master of Engineering and Ph.D. in Computer

Science and Engineering from Sathyabama Institute of Science, Technology and Sankara

University in 2005 and 2013 respectively. He has published around 50+ research articles in

various International Conferences and Journals. His research interests include Computer

Vision, Image Processing, Machine Learning, Deep Learning, and Data Mining. He is a life

member of Broadcast society of India (BES).

https://doi.org/10.1002/stvr.1639

