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Abstract 

Rails, fasteners, and other parts of railway track lines eventually develop flaws due to continuous 

strain from train operations and direct exposure to the environment; these faults directly affect the 

safety of train operations. Detecting defects on rail surfaces presents a formidable challenge due to 

the wide array of possible flaws and their unpredictable nature. However, Defect identification 

errors, massive variances, inadequate training sample availability, and weak contrast between faults 

and the surrounding background all contribute to the complexity of this procedure. In this work, rail 

surface and fastener flaws may be detected non-destructively using a multi-crack detection approach 

based on the Entropy Stacked Autoencoder Diffusion Model (ESADM). A novel approach, ESAFM, 

has been developed, combining a rail surface image encoder with a multi-layer, Stacked 

Autoencoder to extract latent materials from images showcasing different types of cracks. This 

integration reduces the need for significant processing resources by integrating easily into the 

conventional physically-based image workflow. Additionally, the Zero Shot-Semi Supervised 

Fuzzy Class Knowledge Graph (ZS-SSFCKG) method proposes Class Knowledge Graph 

Construction (CKGC), which constructs a CKG to elucidate the connection between defects and 

non-defects. Class features are learned by using a Fuzzy Clustering with Semi Supervised Fuzzy 

Graph Convolutional Network (FC-SSFGCN). The method employs a transformer encoder to 

capture distant relationships, allowing for the extraction of features from defect samples. This 

facilitates the acquisition of distinct defect image characteristics, as industrial defects vary in shape 

and size. The experimental results on the public Railway Track Fault Detection (RTFD)and Rail 

Surface Defect Datasets (RSDDs) with rail surface defects are collected from rail tracks surface 

defect detection. 

Keywords: Rail Surface Defect Detection, Entropy Stacked Autoencoder Based Diffusion Model 

(ESADM), Fuzzy Clustering with Semi Supervised Fuzzy Graph Convolutional Network                      

(FC-SSFGCN), and Class Knowledge Graph (CKG). 
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1 Introduction 

As train speeds and capacities continue to increase rapidly, the safety standards for railway operations 

are escalating (Madhan & Shanmugapriya, 2024; Jiang et al., 2018). Rails, as a critical component of 

train operations and railroad system maintenance, undergo irreversible defects over time. Once these 

defects form, they tend to escalate quickly, posing a significant threat to train safety. Failure to detect 

and address these defects promptly can result in severe incidents such as broken rails, endangering both 

passengers and causing substantial economic losses. Therefore, timely identification and warning of 

defects by railway personnel are crucial to mitigate potential hazards and ensure safe train operations 

(Jessop et al., 2016).  

Rail and its fasteners undergo various pressures during service, including those from train wheel-rail 

contact, environmental factors, and material aging (Wang et al., 2012; Usamentiaga et al., 2022). 

Traditional manual inspection methods dominate railway inspection, but they suffer from subjectivity, 

inefficiency, prolonged duration, high expenses, and susceptibility to harsh external conditions. While 

manual inspection offers simplicity and affordability, it is plagued by low efficiency, high error rates, 

and limited real-time capabilities. Consequently, non-destructive testing methods have gained popularity 

in railway systems, employing techniques such as three-dimensional scanning, current testing, and 

acoustic wave analysis. Thus, there is great practical value and research significance in developing 

automated rail surface flaw identification. 

There are two primary categories into which machine vision methods for rail surface fault detection 

may be divided: Deep learning techniques as well as conventional machine learning techniques 

(Chenariyan Nakhaee et al., 2019). Traditional machine learning techniques involve using cameras to 

automatically identify defects on rail surfaces. Rail defect images must be manually analysed since these 

approaches usually depend on manually created or predetermined attributes. Subsequently, feature 

learning algorithms are proposed for classification purposes. While traditional machine learning 

approaches have advanced rail surface defect detection to a certain degree, they often fall short in 

adequately extracting defect features, especially for small-sized targets where detection accuracy tends 

to be low (Yang et al., 2020). In contrast, deep learning has seen rapid advancements in recent years and 

is increasingly recognized as a preferable option for rail surface defect detection due to its inherent 

advantages in feature representation and modelling capabilities (Varshavardhini & Rajesh, 2023; 

Rampriya et al., 2021). 

However, in real-world scenarios, new defect types in products often emerge since the production 

environment is complex and constantly changing. The pre-trained model is anticipated to function with 

excellent accuracy on these new classes of defects as well since these unique classes of defects were not 

encountered during model training (Varshavardhini & Rajesh, 2023; He et al., 2022). This introduces a 

far more difficult commercial problem: the model has to generalize to these new classes, which is called 

zero-shot recognition (Suleiman, 2023). While there is a wealth of literature on zero-shot recognition, 

primarily focusing on natural images, railway track surface defect images have been largely overlooked 

(Levchenko et al., 2020). Additionally, the surface defect dataset often has an excessive number of 

replicate nodes created by current techniques to construct knowledge graphs for the classes in these 

investigations. Railway track detection involves the identification and segmentation of several cracks, 

making it a crucial aspect of analysing railway images (Rathi et al., 2024; Wei et al., 2019). Given the 

high speeds of trains, the research emphasis is biased toward real-time detection of rail surface defects, 
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necessitating rapid network detection speeds. Consequently, a single-stage target detection algorithm is 

chosen to address this need (Samyuktha & Subaji, 2024; Kocbek & Gabrys, 2019). 

This study introduces a multi-object detection approach called the Entropy Stacked Autoencoder 

Based Diffusion Model (ESADM) for non-destructive detection of defects on rail surfaces and fasteners. 

ESAFM is used to extract latent characteristics from images showing various sorts of faults, which 

combines a multi-layered Stacked Autoencoder with a rail surface image encoder. Furthermore, 

Correlations are built utilizing the Class Knowledge Graph Construction (CKGC) technique between 

issues and non-defects. The trials' findings demonstrate that the recommended model works better and 

finds defects more precisely (Popov et al., 2022). 

2 Literature Review  

Yanan et al., (2018) introduced a deep learning method for identifying flaws in rail surfaces that makes 

use of the YOLOv3 algorithm. The technique determines the width, height, and center point coordinates 

of defects according to their location inside cells using dimensional clustering, then normalizes the 

coordinates appropriately. Next, bounding box item scores are predicted using logistic regression, and 

possible bounding box categories are predicted with the help of binary cross-entropy loss. Next, 

confidence is calculated to make predictions easier. For the purpose of identifying flaws in rail surfaces, 

this approach has several advantages. According to (Yu et al., 2018) a coarse-to-fine model (CTFM) 

was proposed to discover faults at various sizes. Within the CTF framework, this model functions on 

three different levels: subimage, region, and pixel levels. First, a background subtraction approach uses 

longitudinal row consistency at the subimage level to efficiently separate possible subimages with 

defects by filtering out defect-free regions. Then, drawing inspiration from the ideas of visual saliency, 

the region extraction approach employs phase-only Fourier transforms to pinpoint definitive fault 

locations. Tests performed at the pixel-level and defect-level indices show that CTFM performs better 

than the state-of-the-art techniques. 

Jin et al., (2019) presented a deep multimodal RIS (DM-RIS) for surface defect detection that use the 

Faster Region-Based Convolutional Neural Network (RCNN) for defect localization and a quick and 

robust spatially limited Gaussian mixture model for segmentation (Kutlu & Camgözlü, 2021). These 

elements function in parallel inside a parallel structure. A kind of Deep Convolutional Neural Network 

(DCNN) called SegNet architecture was introduced (Liang et al., 2018) and is used to identify surface 

flaws on rails. The technology takes images of surface flaws in rails and feeds them into a 59-layer 

training network that is trained on 120 rail images. This network outperforms conventional image 

threshold segmentation techniques in terms of effectiveness, precision, and interference-free defect 

detection. 

James et al., (2018) suggested a multi-stage deep learning algorithm first to concentrate on the area 

of interest and then a segment images. Subsequently, this cropped image is passed to a binary image 

classifier, which determines which warnings are accurate and which are not. This method has shown 

improved detection performance by lowering the false alarm rate. By building on the DeepLab v3+ deep 

learning system, (Xia-Ting et al., 2019) produced DeeperLab, a flexible and lightweight Bayesian 

alternative. This modification is intended especially for the purpose of identifying flaws on complex and 

diverse rail surfaces. In particular, Dropout is integrated into the enhanced Xception network for 

posterior distribution-based Monte Carlo sampling. Multiple scales and speeds of extraction of the dense 

features are achieved by use of Atrous Spatial Pyramid Pooling (ASPP). Moreover, a more 
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straightforward and effective decoder is suggested to enhance the defect edges, and it generates 

segmentations and uncertainty of the Softmax probability mean and variances. 

Feng et al., (2020) provided a unique object recognition method for rail defect detection. The 

algorithm's network architecture incorporates a MobileNet backbone network with distinct detection 

layers with multi-scale feature maps, drawing inspiration from both YOLO and feature pyramid 

networks. The effectiveness of the algorithm in identifying defects is assessed using two distinct 

MobileNet architectures. The experiment findings show how promising the proposed technique is; it 

shows good accuracy and quick inference rates, making it very applicable in industrial settings. In order 

to extract contextual information (Zhang et al., 2020) proposed using a Long Short-Term Memory 

(LSTM) network by an OC-IAN and OC-TD, while a One-Dimensional Convolutional Neural Network 

(ODCNN) is utilized for feature extraction (Camgözlü & Kutlu, 2023). The primary distinction is in the 

design: OC-TD has a double-branch architecture instead of the attention module seen in OC-IAN. 

Processing the Gabor magnitude image is the initial step for extracting first-order statistical data in 

the study (Thendral & Ranjeeth, 2021). In order to discern between track images that have been cracked 

and those that have not, these attributes are then fed into a deep learning neural network. A deep classifier 

network is used to recognize items ahead of a train on a railway track, according to (Kapoor et al., 2022). 

2-D Singular Spectrum Analysis (SSA) is a decomposition approach that breaks down the image into 

useful components to help with this procedure. The deep classifier network then receives these inputs. 

The deep network's identification ability for identifying complications is greatly enhanced by the 

combination of 2D-SSA. This approach also presents a new metric for railroad track identification. A 

system like this might help lower the financial load and number of railway accidents. The approach's 

results show that obstructions on the railway track may be recognized with high accuracy and 

effectiveness, which improves railway safety.  

Wang et al., (2022) introduced a novel rail defect detection network leveraging on Mask                     

Region-based Convolutional Neural Network (Mask R-CNN). This detection network is equipped with 

a fresh feature pyramid for merging multiple scales. Furthermore, to overcome the inadequacies of IOU 

in specific circumstances, a new assessment measure named Complete Intersection over Union (CIoU) 

is added into the region proposal network. In order to deal with the problem of limited faulty datasets, 

both data augmentation and transfer learning approaches are used during the training phase. A novel 

Rail Boundary Guidance Network (RBGNet) is presented (Wu et al., 2022) in order to identify notable 

Rail Surfaces (RS). At first, In order to fully use the synergy between Rail Edges (RE) and RS, a unique 

design is proposed that facilitates the accurate identification of RS with different boundaries. In order to 

steer the network and comprehend the shift between the input and ground truth, RBGNet is then 

equipped with a novel hybrid loss that combines Binary Cross Entropy (BCE), Structural Similarity 

Index Measure (SSIM), and IoU. Ultimately, tests carried out on a demanding Unmanned Aerial Vehicle 

(UAV) rail dataset show how effectively the system detects objects and adjusts to difficult settings. 

Liu et al., (2022) presented A pyramid feature called Convolutional Neural Net (CNN) is employed 

to detect surface flaws on railroads. Just 40% of the dataset is used to train the network utilizing IoU 

loss functions in addition to binary cross-entropy. Experiments on the RSDD dataset are used to evaluate 

this approach's efficacy in comparison to other approaches. Ye et al., (2023) proposed a novel approach 

to identify rail surface problems using laser technology and 3-D pixel-level analysis, combining deep 

semantic segmentation principles with accurate laser measurements. Initially, the train surface is scanned 

in three dimensions using a moderately priced two-dimensional laser triangulation sensor. Next, a newly 

developed deep semantic segmentation network with fully convolutional segmentation and dual 
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symmetric mapping is demonstrated. This network can handle 3-D laser measurement data as input and 

output pixel-level defect detection findings from beginning to end with ease. 

Luo et al., (2023) stated that the rail surface fault detection system is based on an enhanced version 

of YOLOv5s. To improve the dataset of photos of rail surface flaws, random cropping, flip 

transformations, and brightness adjustments are first applied. After that, a Conv2D and Dilated 

Convolution (CDConv) module is made to lessen network processing. Additionally, by integrating the 

Swin Transformer with the Neck and Backbone ends, the original network's C3 module is enhanced. 

Next, the Global Attention Mechanism (GAM) and the Path Aggregation Network (PANet) are 

integrated to build a new prediction head called the Swin Transformer and GAM Prediction Head 

(SGPH). Finally, the Soft-SIoUNMS (Scale-sensitive Intersection over Union Non-Maximum 

Suppression) loss is used in place of the original CIoU loss, accelerating algorithm convergences while 

minimizing regression errors. Zero-Shot Class Knowledge Graph (ZS-CKG), which was suggested             

(Li et al., 2022), is a technique that is provided for surface defect diagnosis in real-world scenarios. This 

approach identifies associations between defect classes that have previously been recognized and those 

that haven't by using the CKGC methodology to generate a class knowledge graph. A graph 

convolutional neural network is then used to learn the class characteristics. Because industrial faults 

come in a variety of shapes and sizes, this method uses a transformer encoder to capture broad 

dependencies that allow for the extraction of discriminative characteristics from defect samples. 

3 Proposed Methodology 

The Entropy Stacked Autoencoder Based Diffusion Model (ESADM) is a multi-crack detection 

technique that this work proposes for the non-destructive diagnosis of fastener and rail surface flaws. 

Using a multi-layer Stacked Autoencoder and a rail surface image encoder, ESADM extracts latent 

representations from photos with different kinds of fractures. Furthermore, the ZS-SSFCKG approach 

is put out, which integrates Class Knowledge Graph Construction (CKGC) to create relationships 

between fault classes. Class characteristics are learnt using a semi-supervised fuzzy graph convolutional 

network (FC-SSFGCN) in conjunction with a fuzzy clustering technique. The overall framework of the 

proposed system is illustrated in Figure 1. 

 

Figure 1: Architecture Diagram of Surface Defect Recognition  
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1) Dataset Description 

Two benchmark datasets like RTFD and RSDDs has been introduced for surface defect detection.  

RTFD: Railway track problem detection data was gathered from 

https://www.kaggle.com/datasets/salmaneunus/data. With 384 images for training, testing, and 

validation, it includes all incorrect and non-defective images. Both classes have equal number of 

samples.  

RSDDs: The RSDDs dataset contains two categories of rail defect data: Types I and II. 67 fault 

images from high-speed rail tracks are the source of Type-I flaws, while 128 defect images from 

conventional or heavy-duty transportation tracks are the source of Type-II problems. Furthermore, a 

finite number of randomly chosen defect samples from the test set are needed by the model for the 

training phase. Type-I and Type-II rail images are downsized to 64 × 64 and 160 × 160, respectively, 

after dividing and resizing. This dataset is accessible at https://github.com/neu-rail-rsdds/rsdds.  

2) Proposed Model for Surface Defect Detection 

Figure 2 illustrates the components of the proposed model, which include an image encoder, a class 

encoder, and a classifier. Firstly, the image encoder function encodes an input image into an image 

attribute. Secondly, the class encoder function encodes classes into class attributes. The classification 

function then utilizes the image feature and class value to determine the image label. The proposed 

architecture consists of two phases: training and testing, illustrated in Figure 2. 

 

Figure 2: Proposed Multi-Crack Detection Model 
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The image encoder module is responsible for extracting image features, using components for 

transformer encoding and image processing. Meanwhile, the class encoder module uses word embedding 

to initialize node features, CKGC to build a class knowledge graph, and the GCN encoder module to 

learn node features. Lastly, the classifier module predicts the class data based on the class score, which 

it computes by integrating the characteristics of the input image with the class features. 

• Image Encoder Module  

Figure 2 (Kampffmeyer et al., 2019) the transformer encoder component and the image processing 

component make up the image encoder module. The transformer encoder needs the image processed 

into a certain input form, which is handled by the image processing component. During the training and 

testing phases, there is no cross-section amongst the input image classes. To extract individuality, the 

transformer encoder transmits the previously analyzed image. 

Image Processing Module 

The image is divided into N fixed-size series patches by the image processing element, and a linear block 

embeds the input patches into a 1D latent variable. Subsequently, every patch embedding and the specific 

token have position embeddings, and all patch embeddings have specific tokens added to the front. Thus, 

the image processing function processes conversion of the image to the transformer encoder's required 

input format.  

Transformer Encoder 

Transformer blocks are arranged in L layers within the transformer encoder system. The transformer 

block consists of the skip connection block, MLP block, Multi head Self-Attention (MSA), and 

normalization (Norm). le0 is presently employed to denote an input image x ∈ ℝℋ×𝒲×𝒞 that is supplied 

into the transformer encoder element. First, by using the connection blocks for Norm, MSA, and skip, 

le0 is denoted as le l
′ , and the method is given by equation (1). There, le l

′  denotes the 𝑙𝑡ℎ layer of the 

transformer block. Secondly, employing MLP, Norm, and skip connection blocks to denote lel, the 

procedure may be expressed as equation (2). In image feature, le0 is ultimately incorporated as lelover 

the [class] token and transformer encoderle tb
0  is assigned as x′ utilizing the Norm block; this procedure 

may be summed up as equation (3). The transformer encoder module operation stated as follows. 

lel
’ = MSA(Norm(lel− 1)) + lel− 1, ∀l =  1⋯ tb (1) 

lel = MLP(Norm(lel
’))  + lel

’ , ∀l = 1⋯ tb (2) 

x ′ =  Norm( letb
0 ) (3) 

Where tb is the quantity of transformer blocks. The input image is extracted during the phases of the 

transformer encoder and image processingx ∈ ℝℋ×𝒲×𝒞as a 1D vector x′ ∈ ℝ𝒟. 

Object Detection Using ESADM 

The Diffusion Model (DM) aims to understand target defect objects, referred to as p(x), using iterative 

noise removal on a conventional normal distribution variable. By repeatedly adding noise ϵ ∼N(0, 1) to 

an initial input image x, this approach interprets diffusion as a preset Markov chain with a length of T. 

The equation (4) is given as, 
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xt = αtx + βtϵ (4) 

t is equally sampled from 1...T noise region is defined by hyperparameters αt and βt. The learning 

purpose of widespread score-matching DM and the equation (5) is given as, 

LDM = 𝔼x,ϵ~𝒩(0,1),t[‖ϵ − ϵθ(xt, t)‖2
2] (5) 

Where an equally weighted denoising autoencoder trained to anticipate a solution of xt−1 from x_t 

is indicated by the symbol ϵθ(xt, t). With x representing the image representation and c the condition, 

the goal is to construct a conditional distribution, p(x|c). Such conditional distributions may be modeled 

by DM by using the following learning goal to train a conditional denoising backbone, ϵθ(xt, t, 𝜏θ(c)). 

The equation (6) is given as, 

LDM = 𝔼x,c,ϵ~𝒩(0,1),t[‖ϵ − ϵθ(xt, t, 𝜏θ(c))‖2
2] (6) 

Where c is transformed into an intermediate representation by the domain-specific encoder 𝜏θ. 

The amount of x has a major impact on the computing cost of the denoising backbone of the Diffusion 

Model (DM), which may represent a conditional distribution p(x|c). On the other hand, diffusion and 

denoising are carried out inside a perceptually compressed latent space by the Latent Diffusion Model 

(LDM), which usually uses a pre-trained encoder E and decoder D. Accordingly, LDM operates in the 

latent domain p(z), where D may be used to decode z to its matching x.The input, hidden, and output 

layers make up the three layers of an autoencoder, a form of unsupervised learning architecture. An 

encoder and a decoder are the two halves of an autoencoder's training process. Based on the encoder's 

hidden representation, the decoder reconstructs the input data. With the railway track dataset input that 

is not labeled {𝑥𝑛}𝑛=1
𝑁 , where 𝑥𝑛 ∈ ℝ

𝑚×1, The hidden encoder vector, denoted by hn, is determined 

using𝑥𝑛, and 𝑥𝑛represents the output layer's decoder vector. Therefore, the following is the encoding 

process. The equation (7) is given as, 

hn = f(W1xn + b1) (7) 

Where b1 is the bias vector, W1 is the encoder's weight matrix, and f is the encoding function by 

encoder E. Here is a definition of the decoder process. The equation (8) is given as, 

𝑥𝑛 = g(W2hn + b2) (8) 

Where the weight matrix of the decoder is W2, the bias vector is b2, and g is the decoding function 

by decoder D. Weight value of encoder and decoder is computed using the entropy. It is defined as 

follows. The equation (9,10) is given as, 

𝐸𝑘 = −
1

ln (mn)
∑∑pij

k lnpij
k

n

j=1

m

i=1

, k ∈ T 
(9) 

pij
k =

uij
k

∑ ∑ uij
kn

j=1
m
i=1

&0 ≤ 𝐸𝑘 ≤ 1 
(10) 

m, n is denoted as the row and column. To reduce the reconstruction error, the auto encoder's 

parameter settings are improved. The equation (11) is given as, 

𝜙(Θ) = argmin
θ,θ′

1

n
∑L(xi, x̂i)

n

i=1

 
(11) 

Where a loss function is represented by L. The equation (12) is given as, 

𝐿(x, x̂) = ‖x − x̂‖2 (12) 
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Figure 3 illustrates the configuration of a Stacked Autoencoder (SAE), it uses an unsupervised layer 

wise learning strategy to stack n autoencoders into n hidden layers and then uses a supervised algorithm 

to fine-tune. 

 

Figure 3: Stacked Autoencoder (SAE) Structure 

Three phases make up the SAE-based strategy (Yu et al., 2022; Wan et al., 2019). To obtain the 

learned feature vector, (1) train the initial autoencoder using input data. (2) Repeating this until training 

is complete, using the feature vector from the previous layer as input for the next layer. (3) The 

Backpropagation (BP) approach minimizes the cost function and fine-tunes weights using the labeled 

training set after training all hidden layers. 

• Class Encoder Module  

Class encoder system includes the word embedding, FC-SSFGCNencoder system, and CKGC. The 

defect CKG is generated utilizing the surface defect class data provided by the CKGC function. The 

nodes in the generated CKGC have their attributes prepared by the word embedding function. When 

node properties and the defect CKG are supplied into the FC-SSFGCNencoder part it may acquire every 

node visual representation. 
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Class Knowledge Graph (CKG) Construction 

By requesting the nodes in a current knowledge graph that are associated with the defect class, this 

component creates the defect CKG. The connection amongst the base and novel defect classes is 

established utilizing the CKG. Utilizing the WordNet knowledge graph, the ZS-CKG will generate a 

CKG. 

Word Embedding 

CKG node parameters are to be initialized in this part. Every node in the CKG has its attribute generated 

utilizing word embeddings that were pre-trained on extensive language datasets. The ZS-CKG uses 

GloVe, which has been pre-trained on Gigaword 5 and Wikipedia 2014, to map each class into a 300-D 

vector form. An unsupervised learning system called GloVe is employed to generate vector illustrations 

for words. After training on consolidated global word-word combination statistics from a corpus, 

intriguing linear components of the word vector space are displayed in the final visualizations. 

Fuzzy Clustering with Semi Supervised Fuzzy Graph Convolutional Network (FC-SSFGCN) 

Encoder 

The class knowledge graph and the node initialization features are the inputs used by the FC-SSFGCN 

encoder module to extract node features. It is composed of an activation function block and a graph 

convolutional block. Let X =  (x1, x2, … . , xn)  ∈ ℝ
n×p represent the group of n p-dimensional image 

vectors. Let G(X,A) be X represented on a graph using A ∈ ℝn×n representing the pairwise connections 

(neighborhoods of similarity) between image X. Propagation (hidden) layers consist of many layers, one 

final perceptron layer, and one input layer in GCN. A unique network architecture called FC-SSFGCN 

simultaneously combines graph learning and graph convolution. X =  (x1, x2, … . , xn) ∈ ℝ
n×p to search 

for a function that is not negative Sij  =  g(xi, xj). It illustrates the link between images pairwise xi & xj. 

g(xi, xj) is specified by a weight vector using a single-layer neural networka =  (a1, a2, … . , ap)
T
∈

ℝp×1. Formally, understand the following graph S. The equation (13) is given as, 

Sij = g(xi, xj) =
exp (ReLU(aT|xi − xj|))

∑ exp (ReLU(aT|xi − xj|))
n
j=1

 

(13) 

The nonnegativity of Sij is ensured by the activation function ReLU(. )  =  max(0, . ). Assuring that 

the learned graph S is what the softmax operation does on each row of S. The equation (14) is given as, 

∑Sij = 1

n

j=1

, Sij ≥ 0 
(14) 

Reduce the loss function to maximize the weight vector a and the equation (15) is given as, 

ℒG = ∑‖xi − xj‖2
2
Sij + γ‖S‖F

2

n

i,j=1

 
(15) 

Sijis encouraged to be lower when the distance between image points xi and xj is larger ‖xi − xj‖2
2
. 

A projection matrix P ∈ ℝp×d, d < p, is used to parameterize the implementation of a single-layer                  
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low-dimensional embedding network. Specifically, the following describes final graph learning. The 

equation (16) is given as, 

Sij = g(x̃i, x̃j) =
Aij exp (ReLU(a

T|x̃i − x̃j|))

∑ Aij
n
j=1 exp (ReLU(aT|x̃i − x̃j|))

 

(16) 

Where the initial graph is represented by A. Aij= 1 may be set in the aforementioned update rule if it 

is unavailable. When the loss function is transformed into and the equation (17) is given as,  

ℒGL = ∑‖x̃i − x̃j‖2
2
Sij + γ‖S‖F

2

n

i,j=1

 
(17) 

The suggested graph, denoted as S, possesses a specific probability attribute where the optimal 

Sijindicates the likelihood of image xj  being linked to xi  as a neighboring node. Graph convolution 

layers consist of many layers, a final Perceptron layer, and a single graph learning layer in FC-SSFGCN. 

Using the adaptive neighbor graph S that the graph learning layer provides, it applies a layer-wise 

propagation concept inside the convolutional layers. The equation (18) is given as, 

X(k+1) = σ(Ds
−
1

2SDs
−
1

2X(k)W(k)) 
(18) 

Where k =  0, 1… . , K −  1. Ds  =  diag(d1, d2, …… , dn) is a matrix containing diagonal elements 

that are diagonal di = ∑ Sij
n
j=1 . W(k) ∈ ℝdk×dk+1 is each convolution layer's unique trainable weight 

matrix.(.) indicates a function that activates ReLU(, )  =  max(0, . ), & X(k+1) ∈ ℝn×dk+1  is represented 

as the result of the kth layer's activations. Graph S that was learned satisfy ΣjSij = 1, Sij ≥  0, here is a 

simplified version of equation (19). 

X(k+1) = σ(SX(k)W(k)) (19) 

The last perceptron layer should be defined as follows for semi-supervised classification. The 

equation (20) is given as, 

Z = softmax(SX(K)W(K)) (20) 

Where the number of classes is indicated by c and W(K) ∈ ℝdK×c . The label prediction of the                      

FC-SSFGCN network is shown by the final output Z ∈ ℝn×c, where Zi is the label prediction for the ith 

node in each row. By reducing the losses function, all of the network parameters, represented by Θ =

 {P, a,W(0), … . . ,W(K)}, are jointly trained. The equation (21) is given as, 

ℒSemi−FC−SSFGCN = ℒSemi−SSFGCN + λℒGL (21) 

Where equations (17–20) determine ℒGL  and ℒSemi−SSFGCN . One trade-off parameter is  

λ ≥  0. It is observed that when λ = 0, the optimum graph S is similarly feasible in FC-SSFGCN and is 

learned exclusively from the labeled image (i.e., cross-entropy loss). GCN specifies the final perceptron 

layer for semi-supervised classification as follows. The equation (22-24) is given as, 

Z = softmax(D−
1

2AD−
1

2X(K)W(K)) (22) 

Where W(K) ∈ ℝdK×c and the number of classes is indicated by c. The resultant productZ ∈ ℝn×c is 

the label prediction for every image X, where the label prediction for the ith node is indicated by each 

row Zi . Constrained to a range of 0 to 1, the fuzzy membership function represents the degree of 

similarity between the location's image value and the ideal image value. The {a, b, c} parameters define 
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the triangular fuzzy membership function, where the membership function is assigned to each value 

image x. 

µtriangle(x, a, b, c) =

{
 
 

 
 

0, x ≤ a
x − a

b − a
, a ≤ x ≤ b

c − x

c − b
, b ≤ x ≤ c

0, c ≤ x

 

(23) 

ℒSemi−SSFGCN = −∑∑Yij

c

j=1

ln Zij
i∈ℒ

 
(24) 

Fuzzy membership function is introduced to minimize the cross-entropy loss function, the optimum 

weight matrices {W(0), … . . ,W(K)}, ℒ  denoted as the set of nodes that have been labeled (Kipf & 

Welling, 2016). The process iterates through membership and centroid while minimizing the objective 

function to provide clustering results. FCM has the following design. The equation (25) is given as, 

JFCM(u, v) =∑∑uij
m

n

j=1

c

i=1

Dij
2 ,m > 1 

(25) 

where m>1 applies to the fuzzy exponent m, and  

Dij
2 = ‖xj – vi‖

2
 is the definition of the Euclidean distance. Reduced objective function (25) may lead 

to membership. Iterative membership and centroid functions make up equations (26–27). 

uij = [∑(
D(xj, vi)

D(xj, vk)
)

(
2

m−1
)c

k=1

]

−1

 

(26) 

vi =
∑ uij

mxj
n
j=1

∑ uij
mn

j=1

 
(27) 

The approach is subject to the following three restrictions, notwithstanding the improved clustering 

performance: uij ∈ [0, 1], (i =  1, 2, . . . , c, j = 1, 2, . . . , n), ∑ uij
c
i=1 = 1  and 0 < ∑ uij

c
i=1 <  𝑛, (𝑗 =

 1, 2, . . . , n). 

Classifier Module Using GCN 

The image feature obtained from the image encoder system was multiplied by the class feature supplied 

by the class encoder system by the classifier system. To obtain the label of input image, argmax the 

score. The transformer encoder function extracts batch images. Graph neural networks that function with 

rich relational graph data between pieces are known as Graph Convolutional Network (GCN). Label 

information may migrate from labeled to unlabeled nodes through the GCN, which distributes label and 

feature data among connected nodes. GCN-based techniques have recently shown impressive results on 

knowledge graphs. GCN-based techniques have demonstrated notable efficiency and attracted increased 

attention in knowledge graphs. GCN is employed by the knowledge graph-based Zero-Short recognition 

to effectively encode categories as matrices.  
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4 Results and Discussion 

A single NVIDIA RTX2080S GPU, 16GB of RAM, Intel Core i7-9700 CPU, Windows 10 OS, and the 

YOLO technology are all included in the test environment. The simulation involves adjusting the image 

size to 224 × 224 pixels, employing the Adam optimization technique to improve the framework, setting 

the learning rate to 0.0001, training the model over 100 epochs utilizing a mini-batch of 10. In this case, 

consider into view that 70% of the data from Rail-5k and RSDDs is the train set, and 30% of the data is 

the test set. The study chooses precision, recall, F-measure, accuracy, and additional variables to contrast 

the algorithm with in order to appropriately assess its impact.  

Equation (28) displays the percentage of actual positive samples amongst those determined as 

positive samples, defines precision. 

Precision =
TP

TP +  FP
 

(28) 

Equation (29) defines recall, shows the percentage of positive instance in the sample are properly 

recognized. 

Recall =
TP

TP +  FN
 

(29) 

It is insufficient to evaluate the model accuracy solely on recall or precision. As a result, the                          

F-measure was created to take recall and precision into account simultaneously. Equation (30), which 

defines the F-measure, is an example.  

F − Measure =  2 ×
Precision · Recall

Precision +  Recall
 

(30) 

Typically, accuracy is employed to assess an algorithm's global accuracy, that can't include too much 

data or provide a complete assessment of the model. Equation (31) provides the explanation. 

Accuracy =  
TP + TN

TP +  TN +  FP +  FN
 

(31) 

True Positive (TP) denoted a properly determined positive instance; True Negative (TN) denoted a 

precisely discovered negative instance; False Positive (FP) denoted a misidentified negative instance; 

and False Negative (FN) denoted a mistakenly discovered positive instance for a misidentified negative 

instance. Accuracy, recall, precision, and f-measure for RTFD and RSDDs among defect detection 

methods are displayed in Figures 4-7. ZS-CKG [26], CTFM [36], DCNN [37], R-CNN [13], and 

proposed system with their evaluation metrics are discussed in Table 1.  

Table 1: Comparative Results Analysis for Datasets 

DATASETS  METRICS ZS-CKG CTFM DCNN R-CNN ZS-SSFCKG 

RTFD PRECISION (%) 75.87 78.55 80.42 82.19 84.74 

RECALL (%) 78.73 79.84 82.15 85.47 87.15 

F-MEASURE (%) 77.27 79.19 81.28 83.79 85.93 

ACCURACY (%) 76.18 78.51 80.86 82.33 84.87 

RSDDs PRECISION (%) 74.39 76.18 78.53 82.47 85.25 

RECALL (%) 77.85 78.37 80.31 84.66 86.58 

F-MEASURE (%) 76.08 77.26 79.41 83.55 85.90 

ACCURACY (%) 77.54 79.85 82.59 85.82 87.61 
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Figure 4: Precision vs. Zero-shot based on Knowledge Graph Methods 

Figure 4 shows the precision comparison of methods with 2 datasets. From the graph, it can be 

observed that the proposed system produces superior surface defect identification of 85.25%, previous 

approaches is 74.39%, 76.18%, 78.53%, and 82.47% for RSDDs. Other methods like ZS-CKG, CTFM, 

DCNN, and R-CNN had lesser results of 10.86%, 9.07%, 6.72%, and 2.78% for RSDDs. However, the 

presented empirical findings lead to the conclusion that the proposed system utilizes the advantages of 

the rapid intersecting across the GCN, making it a superior choice for the prompt detection of surface 

defects. 

 

Figure 5: Recall VS. Zero-Shot based on Knowledge Graph Methods 
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Figure 5, this graph clarifies the recall comparison of methods with 2 datasets. From the graph, it can 

be observed that the proposed system produces superior surface defect identification is 86.58%, the 

previous approaches is 77.85%, 78.37%, 80.31%, and 84.66% for RSDDs. Other methods like ZS-CKG, 

CTFM, DCNN, and R-CNN had lesser results of 8.73%, 8.21%, 6.27%, and 1.92% for RSDDs.                    

ZS-CKG, CTFM, DCNN, and R-CNN had lesser results of 78.73%, 79.84%, 82.15%, and 85.47% for 

RTFD. From the railway surface defect dataset, the proposed system has the largest recall which was 

with the improved training strategy with ESAFM. 

 

Figure 6: F-Measure VS. Zero-Shot based on Knowledge Graph Methods 

Figure 6, this graph clarifies the F-measure comparison of methods with 2 datasets. It shows that the 

proposed system produces best results of 85.90%, existing methods have given lowest results of 76.08%, 

77.26%, 79.41%, and 83.55% for RSDDs. Other methods like SGCN, GCNZ, ZS-CKG, and DCNN had 

lesser results of 9.82%, 8.64%, 6.49%, and 2.35% for RSDDs. SGCN, GCNZ, ZS-CKG, and DCNN 

have lesser results of 77.27%, 79.19%, 81.28%, and 83.79% for RTFD. It is found that the results of the 

proposed system provide a Latent Diffusion Model (LDM) for surface defect detection without any 

barrier and thus it is more effective than the existing methods. 

 

Figure 7: Accuracy VS. Zero-Shot based on Knowledge Graph Methods 
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Figure 7, this graph clarifies the accuracy comparison of methods with 2 datasets. Proposed system 

produces superior results of 87.61%, previous approaches have given results of 77.54%, 79.85%, 

82.59%, and 85.82% for RSDDs. Other methods like ZS-CKG, CTFM, DCNN, and R-CNN had lesser 

results of 10.07%, 7.76%, 5.02%, and 1.79% for RSDDs. ZS-CKG, CTFM, DCNN, and R-CNN have 

lesser results of 76.18%, 78.51%, 80.86%, and 82.33% for RTFD. Proposed system was developed to 

increase detection rate due to exact detection of rail track cracks via ESAFM which led the detection 

accuracy gets improved than the other methods. 

5 Conclusion and Future Work 

Through prolonged and intensive railway usage, various defects tend to arise, typically resulting in mild 

to moderate surface damage. Such defects can negatively impact the consistent operation of trains and 

even pose risks to travel safety. In this paper, Entropy Stacked Autoencoder Based Diffusion Model 

(ESADM) is introduced for multi-crack detection to improve rail surface error-detecting precision. 

ESADM is designed to learn target defects by progressively denoising an image with normal 

distribution. Concurrent identification of fasteners and rail surface problems in railway track line images 

is accomplished by the use of ESADM. This includes layer-wise unsupervised autoencoder stacking and 

supervised fine-tuning. In ESADM, the weight values of encoders and decoders are optimized using an 

entropy function. In the ZS-SSFCKG framework, the CKGC creates a class knowledge graph to connect 

classes. ZS-SSFCKG extracts faulty sample characteristics and captures long-range dependency using a 

transformer encoder. The ZS-SSFCKG automatically detects rail surface flaws and fastener conditions. 

CKG follows the procedure of Fuzzy Clustering with Semi Supervised Fuzzy Graph Convolutional 

Network (FC-SSFGCN) encoder. Thorough experimentation on benchmark datasets such as RTFD and 

RSDDs showcases the efficacy of the proposed approach. To assess the results, performance assessment 

criteria such as accuracy, precision, recall, and F-measure are used. In forthcoming endeavors, emphasis 

will be placed on gathering additional images of rail surface defects, potentially facilitating the 

identification of various defect types. Moreover, future research will explore the integration of deep 

learning techniques and optimization strategies into the rail surface defect detection model, aimed at 

enhancing the accuracy of defect detection. 
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