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Abstract 

The importance of early identification of congenital heart disease is highlighted by the fact that it 

accounts for around 28% of all congenital abnormalities this is the primary reason why fetus die. 

The necessity of having a thorough understanding of normal cardiac architecture has been 

highlighted by the quick advancements in fetal heart imaging techniques that have occurred in recent 

years. Without this information, it is challenging, even impossible, to distinguish the many 

manifestations of congenital heart illness. This research suggests an immediate fetal cardiac 

identification technique employing US pictures with the You Only Look Once v5 (YOLOv5) 

framework and localization using Fuzzy Attention U-Net (FAU-Net) framework in order to enhance 

the interpretation of the anatomy of the fetal heart through Ultrasound (US) for precise and 

instantaneous diagnoses. Localization is accomplished using a FU-Net architecture, which limits the 

training set to image-level plane labels. This is a crucial component of the proposed study since, for 

big datasets, it would take too much time to produce bounding box annotations, which are not always 

captured. The FAU-Net design has been optimized for best performance. The YOLOv5 framework 

is built to function in real-time and deliver the best results for object identification.  With the aid of 

appropriate fine-tuning, it may function effectively to automatically identify tiny fetal cardiac 

objects in a fast phase. Depending on how much of a detection overlapped with ground-truth 

bounding boxes, it was determined if it was a genuine positive or a false positive. This research 

primarily aids medical professionals in the diagnosis of fetal cardiac anatomy. The efficiency of the 

outcomes is evaluated using metrics including accuracy, memory, average precision (AP), mean 

average precision (mAP), and F-measure. 

Index Terms: Congenital Heart Disease (CHD), Ultrasound Imaging, Deep Learning, Object 

Detection, You Only Look Once v5 (YOLOv5), Fuzzy Attention U-Net (FAU-Net) Architecture, 

and Object Localization.  
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1 Introduction  

Congenital heart disease (CHD), which affects 2 to 6.5 out of every 1000 live births, is a significant 

contributor to newborn morbidity and death. The risk status of the mother has little effect on the 

prevalence of CHD (Nayak, K., 2016). The necessity for early medical as well as surgical intervention 

at or shortly after delivery in more than half of all CHD cases emphasizes the value of prenatal screening. 

Fetal echocardiogram is a specialized, in-depth ultrasound (US) test that assesses the heart's shape and 

function while the mother is still carrying the child in order to diagnose CHD and myocardial 

dysfunction before birth. When the embryonic heart has developed enough to be realistically visualized 

by transabdominal ultrasound, fetal echocardiogram is commonly done between 18 and 22 weeks of 

gestation. Transvaginal ultrasonography was once used to find the fetus heart development with a lower 

specificity from weeks 12 and 13, but the findings frequently needed to be confirmed by a thorough fetal 

echocardiogram. 

Fetal echocardiography should be investigated pregnant women who have fetus or maternal 

conditions that might raise the chance of a heart abnormalities are present. In particular, 

echocardiography is an essential tool for identifying and treating CHD because it can accurately evaluate 

the embryonic heart's anatomy and function (Shi, C., 2002). The optimum image for prenatal diagnoses 

and examinations for fetal CHD, the developing baby's ultrasound Four-Chamber (FC) view, provides 

physicians with a clear picture of the fetal cardiac morphology (Pan, S., 2020). During the initial tests 

of fetal CHD, the key point of evaluation for the clinicians is the morphological and functional 

characteristics of the unborn heart (Pan, S., 2020). It is important to note that the division of tissues or 

lesions can statistically examine the clinical characteristics associated with volume or developmental 

morphology, aid physicians in correctly diagnosing the patient's condition, and plan an appropriate 

treatment approach (Pan, S., 2020).  Prenatal CHD diagnosis has a substantial influence on the course 

of the pregnancy, the decision to abort, fetal treatment, delivery method, and the requirement for tertiary 

care. 

It is extremely challenging to study these nine fetus cardiac substructures because of the small size 

of the heart of the fetus, the small size among the nine fetus heart substructures, the not fixed fetus 

placements, and categorization uncleared due to a resemblance of the chambers of the heart (Pinheiro, 

D.O., 2019) (Nurmaini, S., 2021). A Computer-Aided Diagnosis (CAD) approach that assists doctors in 

automatically locating embryonic cardiac objects has garnered a lot of interest in recent years (Nurmaini, 

S., 2021) (Madani, A., 2018) in an effort to alleviate these issues. These techniques can help doctors 

automatically identify fetal cardiac structures which can have a substantial impact on the early detection 

of congenital heart disorders. Furthermore, a method including automated fetal US interpretation can 

involve non-experts using portable equipment at point-of-care settings. 

Using CAD and Artificial Intelligence (AI), fetal cardiac imaging analysis, it is feasible to 

autonomously segregate and categorize the developing cardiac organ (Torrents-Barrena, J., 2019) 

(Zhang, B., 2021) to find problems with the septum of the heart (Gandhi, S., 2018). Three distinct forms 

of holes in the atria, ventricles, or both are utilized to identify CHD: AVSD (atrioventricular septal 

defect), VSD (ventricular septal defect), ASD (atrial septal defect) (Nurmaini, S., 2020) (Mcleod, G., 

2018). The situation is particularly dangerous because it allows blood to flow back and forth through the 

anterior chamber of the cardiovascular system into the left (Puri, K., 2017). Based on DL (Deep 

Learning), CNN (Convolutional neural network) architecture, is an AI technique that might be used to 

identify prenatal items (Torrents-Barrena, J., 2019) (Zhang, B., 2021). 
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Regarding CNN's capability in sorting, the process of segmentation and recognition using imaging 

for diagnosis several research have achieved impressive findings (Rezvy, S., 2020) (Vo, K., 2020). 

Applications like CNN acquire data and provide reliable forecasts along with judgements using previous 

information (Zhong, W., 2018). CNN performs adaption tasks without the use of specific programming. 

Regarding a fetal echocardiography study based on CNN (Torrents-Barrena, J., 2019), leaking via 

missing boundaries caused due to intra-chamber walls is still a problem. The You Only Look Once v5 

(YOLOv5) framework used in this study is built to function in real-time while producing the best results 

for object recognition. To accurately diagnose the fetal heart, Fuzzy Attention U-Net (FAU-Net) has 

been established for object identification. Develop a system for automatically locating objects and 

detecting them in ultrasound pictures of both normal and pathological anatomical structures, such as 

ASD, VSD, and AVSD. It shows how automated localization along with detection techniques may 

greatly raise the rate from CHD diagnosis. 

2 Literature Review  

Nurmaini et al. (2021) offered the use of deep learning for computer-assisted fetus heart ultrasound 

testing utilizing an instance segmented technique, which naturally segment each of the four standard 

cardiac images while also identifying the abnormalities. Many tests are run using 1149 Predictions from 

fetus cardiac image 24 things, such as three occurrences of congenital heart defects, three typical 

morphologies of a heartbeat of a fetus, and 17 heart chamber elements in each perspective. The results 

demonstrated that the suggested model was successful in segmenting typical points of view, with a 

79.97% overlap across collaboration and an 89.70% Dice coefficient similarity. It also did well in the 

detection of CHD, with mean average accuracy of about 98.30% for intra-patient variation and 82.42% 

for inter-patient variance. With the application of automated segmentation and detection techniques, the 

prevalence with congenital heart disease diagnosis might rise. 

To enhance feature learning, Qiao et al. (2020) presented a Multistage Residual Hybrid Attention 

Module (MRHAM). Then, an enhanced YOLOv4 detection model for object detection called MRHAM-

YOLOv4-Slim is proposed. In particular, the MRHAM-YOLOv4-Slim's backbone replaces the residual 

mapping of identity with the MRHAM, precisely finding the four crucial chambers in fetal FC images. 

Sapitri and Darmawahyuni (Sapitri, A.I., 2021) utilized a quicker Regional Convolutional Neural 

Network (R-CNN) using the R-CNN mask technique. devised for deep learning in instances (Bae, D., 

2021). The aortic area of 151 ultrasound pictures of the heart of a fetus has been studied using the 

suggested method. Metrics on the object that was identified using a mean Average Precision (mAP) 

value of 83.71% were evaluated in order to test the evaluation findings. 

You Only Look Once (YOLO) structure -based instantaneous embryonic heart structure 

identification using US video was proposed by Sapitri et al. (2023). The entire loop of neural network 

in YOLO concurrently predicts cardiac substructure objects, packages, and probabilities of classes. Forty 

fetal echocardiography recordings are prepared using the recently released YOLOv7 structure and then 

modified to function optimally and operate quickly in order to obtain dependable performance. The 

findings reached 17 frames per second (FPS) over nine cardiac structure entities in 0.3 ms, with the 

greatest mean average precision of 82.10%. Our study's key conclusion is that YOLOv7 can identify 

features of the embryonic cardiovascular structure in instantaneous even with a small sample size of US 

footage. With the aid of appropriate fine-tuning, such a network may function effectively to recognize 

tiny fetal cardiac objects autonomously in a quick phase. This research primarily aids medical 

professionals in the diagnosis of fetal cardiac anatomy. 
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An entirety Dilated Convolutional Chain W-Net module (DW-Net) was suggested by Xu et al. (2020) 

for precise dissection of seven significant anatomic features in the A4C view. The network consists of 

two parts: 1) a Dilated Convolutional Chain (DCC) for "gridding issue" minimization, multiscale 

contextual information aggregation, and precise localization of heart chambers. 2) A W-Net for better 

segmentation results and more accurate boundary determination. Extensive testing of the suggested 

technique on a dataset of 895 A4C views showed that DW-Net significantly outperformed certain well-

known segmentation methods and could produce good segmentation outcomes, particularly Dice 

Similarity Coefficient (DSC), Pixel Accuracy (PA), and AUC. 

Nurmaini et al.'s (2022) enhanced semantic segmentation method includes two processes—contour 

segmentation with U-Net framework and defect identification with Faster-RCNN architecture—and 

employs a specific recommendation network for septal defect detection. The model is trained using 764 

ultrasound pictures from an apical four-chamber view, which contain three defective situations (namely, 

atrial septal defect, ventricular septal defect, and atrioventricular septal defect) and typical 

circumstances. It may correctly detect the heart of the fetus in both healthy and unhealthy conditions. 

Future prospects for the practical application of deep learning in the diagnosis of congenital cardiac 

conditions are quite promising. 

Analysing whether computers can be taught to identify these viewpoints is the crucial first step 

Madani et al (2018) described as being necessary for thorough computer-assisted echocardiographic 

interpretation. CNN is used to categorize 15 standard views simultaneously (12 video, 3 still), based on 

annotated still photos and video over 267 transthoracic echocardiograms that recorded a variety of 

clinical variance in real-world settings. Reliability within 15 views was 91.70% even on a single low-

resolution picture, compared to board-certified echocardiographers' range of 70.2-84.0%. The program 

classifies utilizing clinically pertinent picture attributes and can distinguish commonalities across related 

images, according to data visualization studies. 

In freehand 2-D ultrasound images, 13 fetal standard views may be automatically detected by 

Baumgartner et al's unique CNN-based technique (Baumgartner, C.F., 2017), which can also localize 

the fetal anatomy using a bounding box. A significant addition is the network's ability to pinpoint the 

desired anatomy using only image-level labels and inadequate supervision. The architecture of the 

network is built to function in real-time and deliver the best results possible for the localization job. 

Results for frame recovery from stored movies in the past, real-time annotation, and localisation on a 

very big and difficult dataset made up of photos and videos taken during comprehensive clinical anomaly 

tests. 

Shu et al. (2022) stated an Efficient Channel Attention U-Net (ECAU-Net) method for segmenting 

the cerebellum. The U-Net acts as the technique's segmentation framework, applying the encoding 

algorithm to acquire representations of features using utilizing the decoder to find segmentation results. 

One-dimensional layers of convolution with identical components are used in place of the complete 

connection layers in the traditional channel attention modules when combined with ECA modules. This 

significantly reduces the amount of model parameters without degrading performance. A significant 

addition is the network's ability to pinpoint the desired anatomy using only image-level labels and 

inadequate supervision. The structure of the network is built to function in real-time and deliver the best 

results possible for the localization job. Results for frame recovery from stored movies in the past, real-

time annotation, and localization on a very big and difficult dataset made up of photos and videos taken 

during comprehensive clinical anomaly tests. 

Shabanzadeh et al.'s (2022) proposal for a quick and accurate U-Net-based architecture for the job of 

segmenting medical images. Four adjusted 2D-convolutional, batch normalization, and 2D-transposed 
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convolutional layers make up the heart of the suggested U-Net model. A four-block encoder-decoder 

path is used. Fetal head circumference was measured using a publicly available dataset (HC18-Grand 

Challenge dataset), and the performance of our suggested architecture was evaluated using datasets 

developed specifically both head circumference as well as belly circumference segmentation tasks. swift 

also precise Just four necessary layers with adjusted parameters are employed for the process of encoding 

and decoding routes in the U-Net model, which is a finely tuned and well-structured version of the U-

Net. The suggested design has a well-tuned structure that produces excellent segmentation accuracy 

while being quick. 

3 Proposed Methodology  

This paper provides an ultrasound-based real-time fetal cardiac detection algorithm using the You Only 

Look Once v5 (YOLOv5) framework. In YOLOv5, a neural network predicts cardiac substructure 

objects, boxes, and class probabilities simultaneously from start to finish. Using in order image-level 

plane labels known after training, the Fuzzy Attention U-Net (FAU-Net) Structure 

accomplishes localization. Results are assessed using metrics including reliability, recall, average 

precision (AP), mean average precision (mAP), and F-measure. The four fundamental processes are 

depicted in Figure 1 as object detection, localization, object detection, and result validation. 

 

Figure 1: Diagram of the Proposed System's Flow 

3.1. Image Acquisition and Fetal Cardiac Annotation 

The first stage in doing studies regarding real-time fetal cardiac identification utilizing ultrasound is 

gathering a well-defined dataset. In this study, 540 normal, VSD, and AVSD US pictures of patients 

receiving regular pregnancies testing during the second trimester of pregnancy within the obstetrics and 

genecology section were collected. With consent waived for compliance, two knowledgeable experts 

identified all US photos. The decreased size of the fetal heart or the loss of distinguishing traits may be 

to blame for the model's difficulty in detecting fetal cardiac substructure objects (Madani, A., 2018). 

The medical record on every US film was examined to identify the fetus heart normal anatomy, and the 

specialists commented the chosen fetal US for educational reasons. The initial Digital Imaging and 

US image dataset 

You Only Look Once v5 (YOLOv5) framework based object 

detection 

Fuzzy Attention U-Net (FAU-Net) based localization 

Evaluation metrics by precision, recall, Average Precision (AP), 

mean Average Precision (mAP), and F-measure 

Congenital Heart Disease (CHD) detection  
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Communication in Medicine (DICOM) standard was used to store all pictures in the US. The fetal 

cardiac substructures annotated procedure is carried out item by object. After the annotating process, 

Figure 2 dubbed all the data the ground truth box. 

   

Normal  VSD AVSD 

Figure 2: Ground Truth Box of Fetal Cardiac Image Types 

3.2. Fuzzy Attention U-Net (FAU-Net) based localization 

Present the FAU-Net deep learning network, which is inspired by the U-Net network topology as well 

as attention mechanism. Figure 3 displays the structure in its entirety. Define "Block(x)", a function that 

twice does a 33 convolution, a batch normalization, and a ReLU activation. The output channel number, 

x, is referred to. The encoder part's job is to obtain multi-level compressed expressions of the image 

features by extracting features from the US picture. The 2 2 max-pooling procedure is used for down-

sampling. A smaller US picture size and twice as many feature channels are added at each 

downsampling. The decoder part's function is to gradually restore the spatial dimensions along with 

details of the fetal cardiac US picture in accordance with the image characteristics, and to get output of 

image mask. Using bilinear interpolation, upsampling is accomplished. The prediction of each pixel's 

class is then applied using a 1 1 convolutional layer, designated as Conv(1 1, C), wherein C indicates 

the number of classes. C is set to 2 for localization of the picture. The encoder and decoder components 

are structurally symmetrical. The related upsampling and downsampling feature maps are linked by the 

copy operation. High-level and low-level features are combined in the feature map, as well as multi-

level features are fused.  

 

Figure 3: Structure of FAU-Net Framework   
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Four components make up the overall structure: an encoder, a decoder, a spatial attention module, 

and a channel attention module. The size of the output of Block(x), assuming an input map of features 

of size DHW, is DHW, where W indicates the feature map's width, H its height, D its input channel 

number, and x its output channel number. Compared to other pictures, the structure of the fetal cardiac 

image is more straightforward and stable in nature. The shot attitude and positioning are constant for 

gland slices, and the glands with a comparable degree of differentiation frequently have a similar form. 

The network makes use of the simple to use attention to space module and the attention channel module. 

They are influenced through the study of Squeeze-and-excitation (SE) (Hu, J., 2018) and Convolutional 

Block Attention Module (CBAM) (Sha, J., 2023). The backdrop will not be noticed since attention will 

be drawn to the items. For the segmentation job, the fuzzy edge was the most important, therefore the 

model will focus more on the margins of the glands. 

Spatial Attention: The channel information is disregarded by spatial attention, which evaluates all 

channel properties identically. Since low-level feature maps primarily extract spatial features like 

contours and edges using fewer channels, spatial attention modules are employed with these maps. 

Figure 4 depicts the organizational layout within the spatial attention module. First, provide the 

aggregation operation the feature map 𝑈 ∈  ℝ𝐶×𝐻×𝑊, which creates a spatial descriptor 𝑝 ∈  ℝ 𝐻×𝑊 

with aggregate the feature map within its channel dimension (C).  

 

Figure 4: Spatial Attention (SA) Module Structure 

A spatial descriptor called 𝑝 ∈ ℝ𝐻×𝑊. is produced by the aggregate function 𝐹𝑎𝑐. The spatial weights 

map 𝑡 ∈ ℝ𝐻×𝑊 is produced via two convolutional layers using the self-learning function Fl. Finally, t is 

used by function 𝐹𝑟𝑒 to produce the SA module's output. It produces a distribution of spatial attributes 

that is global, 

𝑝ℎ𝑤 = 𝐹𝑎𝑐(𝑢ℎ𝑤) =
1

𝐶
∑ 𝑢ℎ𝑤(𝑖)

𝐶

𝑖=1

∗ 𝑓𝑤𝑒 

(1) 

where 𝑓𝑤𝑒  is referred to represent the fuzzy weight for level and 𝑢ℎ𝑤 ∈ ℝ𝐶 refers towards the 

particular feature at spatial point (h,w). The value of a location in the regional window is 𝑥ℎ𝑤, while its 

associated trigonometric function membership is 𝜇ℎ𝑤 , as given in equation (2). This is done by 

computing the function of membership of every pixels as the weight of weighted entropy. 

𝜇ℎ𝑤 =

sin [
𝜋[1−

𝑥𝑚𝑎𝑥−𝑥ℎ𝑤
𝐾

]

2
] + 1

2
 

(2) 
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Equation (2), where 0.5(xmax − xmin) < 𝐾 < xmax . xmax denotes the range's largest value and 

xmin denotes the range's minimum value. Each feature point's entropy weight, ewhw is determined as 

given in equation (3). 

𝑒𝑤ℎ𝑤 =
𝜇ℎ𝑤

∑ 𝜇ℎ𝑤
𝑛
𝑘=1

 (3) 

where each fuzzy subset's feature number, n, is given. If the area window is ℎ × 𝑤 in size, then 

n= ℎ × 𝑤. Finally, as stated in Equation (4), the fuzzy weighted entropy H associated with every fuzzy 

subset is determined. 

𝐻 = ∑[𝑒𝑤ℎ𝑤𝑒1−𝑒𝑤ℎ𝑤 + (1 − 𝑒𝑤ℎ𝑤)𝑒𝑒𝑤ℎ𝑤]

𝑛

𝑘=1

 
(4) 

For channel dimensions, the aggregate function 𝑭𝒂𝒄 provides global average pooling. A weight self-

education technique comes next. Layers of convolution are used to implement it. The spatial weights 

map 𝑡 ∈ ℝ𝐻×𝑤 is generated adapted by the function 𝐹𝑙  (𝑝, 𝑓), which seeks to completely represent the 

spatial correlation. The following is the estimating formula: 

𝑡 = 𝐹𝑙(𝑝, 𝑓) = 𝜎(𝑔(𝑝, 𝑓)) = 𝜎(𝑓2𝛿(𝑓1, 𝑝)) (5) 

where 𝑓1  is the 3 × 3 convolution specified by Conv(3×3, m) and 𝑓2 is the 3× 3 convolution described 

by Conv(3 × 3, 1). The hidden feature map's channel number is m. The activation function in question 

is ReLU, and the spatial weight created at position (h,w) using a sigmoid activation function is 𝑡ℎ𝑤 ∈

(0, 1). Convolution is simply a spatial-wise self-attention function able to capture non-linear spatial 

interactions. It takes the original spatial description as input. The weights chosen in the previous phase 

are applied to feature map U. During spatially wise recalibration 𝐹𝑟𝑒(𝑢ℎ𝑤, 𝑡ℎ𝑤), the feature values of 

various places in U are multiplied by various weights to create the output U ′ of the SA module. 

𝑢ℎ𝑤
′ = 𝐹𝑟𝑒(𝑢ℎ𝑤, 𝑡ℎ𝑤) = 𝑢ℎ𝑤. 𝑡ℎ𝑤 (6) 

Channel Attention: The channel attention module appears as a final layer of the encoder while the 

high-level function map primarily communicates complex features with a wide receptive field and extra 

channels. Through learning to utilize global information, this process enables the network to undertake 

feature recalibration, selecting enhancing valuable characteristics and limiting worthless features. Figure 

5 depicts the channel attention module's organizational structure.    

 

Figure 5: Channel Attention (CA) Module Layout 

The aggregate function 𝐹𝑎𝑠 generates the channel descriptor 𝑞 ∈ ℝ𝐶. The self-learning function Fl, 

which is executed by two totally linked layers, generates the channel weights map 𝑣 ∈ ℝ𝐶. Function Fre 

makes use of v to generate the CA module's outcome. Initially provide the aggregation operation the 
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feature map 𝑈 ∈  ℝ𝐶×𝐻×𝑊 , which aggregates the feature map in its spatial dimension (H × W) to 

produce a channel descriptor 𝑞 ∈  ℝ𝐶. It results in a global dispersion of channel properties, 

𝑞𝑐 = 𝐹𝑎𝑠(𝑢𝑐) =
1

H ×  W
∑ ∑ 𝑢𝑐(𝑖, 𝑗)

𝑊

𝑖=𝑗

𝐻

𝑖=1

 

(7) 

where the notation 𝑢𝑐 ∈ ℝ 𝐻×𝑊designates the local channel c feature. The aggregate function 𝐹𝑎𝑠 

uses global average pooling for the spatial dimension. A weight self-learning mechanism follows. To 

implement it, fully connected layers are utilized. The 𝐹𝑙(𝑞, 𝑤)  function, that creates the channel weights 

map 𝑣 ∈ ℝ𝐶  in an adaptive manner with the goal of completely capturing the interactions between 

channels. The following is the calculating procedure: 

𝑣 = 𝐹𝑙(𝑞, 𝑤) = 𝜎(𝑔(𝑞, 𝑤)) = 𝜎(𝑤2𝛿(𝑤1𝑞)) (8) 

where 𝑤1 ∈  ℝ𝐾×𝐶 , 𝑤2  ∈  ℝ𝐶×𝐾  Number of hidden neurons is denoted by K. For channel c, the 

channel weights 𝑣𝑐 ∈ (0, 1) are produced using a σ sigmoid activation function. It can record how non-

linearly channels interact when their hidden layers are completely coupled. On the feature map U, the 

weight determined in the preceding step is applied. The output U′ for the CA module is created by 

multiplying features values of different channels in U by varying weights by channel-wise 

recalibration𝐹𝑟𝑒(𝑢𝑐  , 𝑣𝑐), 

𝑢𝑐
′ = 𝐹𝑟𝑒(𝑢𝑐 , 𝑣𝑐) = 𝑢𝑐 . 𝑣𝑐 (9) 

For picture localisation in CHD images, several procedures have been utilized. 

3.3. YOLOv5 based Object Detection 

Three components make up the bulk of YOLOv5: the head, neck, and backbone. Figure 6 depicts the 

YOLOv5s network's design. The backbone is in charge of removing feature data from photos. In order 

to reduce the number of network layers and factors whereas expanding the base-level receptive field 

while preserving the extraction of feature accuracy to the greatest extent possible, the network's first 

layer uses a convolution module with a 6 × 6 massive convolutions kernel that converts the dimension 

and height information related to the image into channel information. In this network, the C3 module, 

that effectively functions as a residual module, is crucial for extracting features. The input data is split 

into two halves; one section undergoes the bottle neck module for obtaining deep features, and the other 

section only goes through one convolution module. The feature extraction is finally completed by fusing 

the two components. By using multistage max-pooling to gather local features at various sizes, the 

Spatial Pyramid Pooling - Fast (SPPF) module concatenates them to expand the receptive field while 

maintaining the size of the feature map. The collar part employs the Path Aggregation Network (PANet) 

framework, which combines low-level localization features and high-level semantic features acquired 

by the main network via top-down and bottom-up pathways to enhance the detection of objects of 

various sizes and integrate them into heads of various scales. Information output is handled by the head. 

To correlate with various item sizes, different scale heads have distinct feature map sizes. Each grid in 

the feature map generates a preset piece of data, such as the projected category, item confidence, 

bounding box center coordinates, width, and height. These picked cells are then filtered using the non-

maximum suppression (NMS) approach according to their confidence and location data, producing the 

predicted items.  
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Figure 6: YOLOv5 Network Structure 

Figure 6 displays the detailed design for each component as green boxes and the network topology 

as red boxes. The box loss, object loss, and class loss are the three components that make up the loss 

function in YOLOv5. Binary cross-entropy reduction is used to determine the object's reduction and 

class reduction, whereas complete IoU (CIoU) loss is used to estimate the box loss. YOLOv5 is separated 

as various models, that range from the model with the fewest features through the model with the most: 

YOLOv5n, YOLOv5s, YOLOv5m, YOLOv5l, as well as YOLOv5x, depending on the depth and 

breadth of the network. YOLOv5s is chosen as the basis model later relating the responsiveness and 

correctness of several models. 

4 Results and Discussion  

The real-time recognition of fetus cardiovascular structure is examined in this section using the YOLOv5 

framework. Each network was implemented, tested, and trained using the MATLABR2021a software, 

and the following specifications were followed: These requirements apply to Ubuntu 18.04: Intel(R) 

Xeon(R) Platinum 8255C CPU, 43 GB RAM, RTX 2080 Ti GPU. On the aforementioned platform, both 

the models utilized in this research and the models utilized as an example have been trained and 

evaluated. The information collection was utilized by the framework that was recently developed 

through interpretation in order to more accurately assess the effectiveness of the model. Although the 

featured point positions inside the photos were partially obscured by extremely noisy welding, the 

algorithm continues to detect the locations of all points of feature by evaluating the global features. In 

noisy environments, the framework can maintain high accuracy and robustness because to this. Frames 

per second (FPS) have also been used to gauge the model's performance. Precision, recall, AP, mAP, 

and F-measure measures have each been used to assess the framework's real-time abilities and accuracy 

in detecting (Sha, J., 2023) (Du, Z., 2019). Although recall is used to confirm the existence of each item, 

precision examines how well the object estimates its location. They use the following calculus formulas: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(10) 
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𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(11) 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2. 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛. 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

(12) 

𝑚𝐴𝑃 =
1

𝑁
∑ 𝐴𝑃𝑐

𝑁

𝑐=1

 

(13) 

In addition to Equation (10-13) as well as Equation 10-13, samples are considered to be accurately 

predicted if they have annotation boxes that are close to the expected boxes and with Intersection over 

Union (IoU) value larger than the predetermined IoU threshold. The specimens that must be and are 

correctly classified as positive are denoted by the initials TP, FP, and FN, respectively. Specimen that 

should deserve to be categorized as negative but were instead classified as positive are denoted by the 

letters FP, whereas specimen that the ought to be classified as favorable but were instead classified as 

negative are denoted by the characters FP, FN, and TP. Equation (13), which gives the AP value for 

class c, displays a number of categories N as well as the area AP within the precision-recall (P-R) curve. 

The IoU threshold ranges from 0.5 to 0.95, and the mAP 0.5:0.95 value indicates the average mAP value 

during this range. With the IoU threshold is set to 0.5, the mAP value is that value. The mAP assesses 

the model's recognition of N categories. Item detection accuracy and recall are totally and correctly 

reflected by the mAP. Therefore, within the attributes of the point identification task examined in this 

work, the smaller the missed as well as incorrect rate of detection using the visuals, the larger the mAP, 

which largely reflects improved detection accuracy. YOLOv4Slim, MRHAM-YOLOv4Slim, 

Supervised Object detection using Normal data Only (SONO)-YOLOv2 (Komatsu, M., 2021), and 

YOLOv5 are examples of convolutional block attention modules. 

Table 1: Performance Comparison with the Methods 

Methods Precision (%) Recall (%) F-measure (%) AP (%) mAP(%) FPS 

CBAM- YOLOv4Slim  79.25 80.71 78.39 78.19 80.22 75 

MRHAM-YOLOv4Slim 84.87 83.66 81.55 82.55 83.84 51 

SONO-YOLOv2  88.91 87.69 85.57 86.87 87.61 42 

YOLOv5 93.33 94.33 93.35 92.40 92.41 28 

 

Figure 7: Precision Results Comparison Vs. Object Detection Methods 

70

75

80

85

90

95

100

CBAM- YOLOv4Slim MRHAM-YOLOv4Slim SONO-YOLOv2 YOLOv5

P
R

E
C

IS
IO

N
(%

)

METHODS

CBAM- YOLOv4Slim MRHAM-YOLOv4Slim

SONO-YOLOv2 YOLOv5



Fuzzy Attention U-Net Architecture Based Localization and 

YOLOv5 Detection for Fetal Cardiac Ultrasound Images 
S. Satish et al. 

 

12 

The precision outcomes comparing among multiple objects detecting techniques is shown in Figure 

7. The precision of object identification techniques such as CBAM-YOLOv4Slim, MRHAM-

YOLOv4Slim, SONO-YOLOv2, and YOLOv5 has been evaluated. Results for accuracy are 79.25%, 

84.87%, 88.91%, and 93.33% for approaches like CBAM-YOLOv4Slim, MRHAM-YOLOv4Slim, 

SONO-YOLOv2, and YOLOv5. 

 

Figure 8: Recall Results Comparison Vs. Object Detection Methods 

Figure 8 compares the recall outcomes of several object detecting techniques. In the CHD dataset, 

the recall of object identification techniques such CBAM- YOLOv4Slim, MRHAM-YOLOv4Slim, 

SONO-YOLOv2, and YOLOv5 has been evaluated. Recall rates of 80.71%, 83.66%, 87.69%, and 

94.33% are obtained using the techniques CBAM-YOLOv4Slim, MRHAM-YOLOv4Slim, SONO-

YOLOv2, and YOLOv5. 

 

Figure 9: F-measure Results Comparison Vs. Object Detection Methods 

Figure 9 shows a comparison of detecting objects algorithms using F-measure findings. The 

performance of object identification techniques like CBAM-YOLOv4Slim, MRHAM-YOLOv4Slim, 

SONO-YOLOv2, and YOLOv5 has been evaluated using the CHD dataset's f-measure. The f-measure 

findings for the techniques CBAM-YOLOv4Slim, MRHAM-YOLOv4Slim, SONO-YOLOv2, and 

YOLOv5 are 78.39%, 81.55%, 85.57%, and 93.35%, respectively. 
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Figure 10: AP Results Comparison Vs. Object Detection Methods 

Figure 10 shows an analysis of object detecting techniques' AP findings. In the CHD dataset, object 

identification techniques including CBAM-YOLOv4Slim, MRHAM-YOLOv4Slim, SONO-YOLOv2, 

and YOLOv5 have been evaluated by AP. CBAM-YOLOv4Slim, MRHAM-YOLOv4Slim, SONO-

YOLOv2, and YOLOv5 techniques yield AP values of 78.19%, 82.55%, 86.87%, and 92.40%, 

respectively. 

 

Figure 11: mAP Results Comparison Vs. Object Detection Methods 

Figure 11 shows a contrast of detection of objects techniques using mAP data. The mAPin CHD 

dataset has evaluated object identification techniques including CBAM- YOLOv4Slim, MRHAM-

YOLOv4Slim, SONO-YOLOv2, and YOLOv5. The mAP values for the techniques CBAM- 

YOLOv4Slim, MRHAM- YOLOv4Slim, SONO- YOLOv2, and YOLOv5 are 80.22%, 83.84%, 

87.61%, and 92.41%, respectively 

5 Conclusion and Future Work  

This study uses the You Only Look Once v5 (YOLOv5) framework, which is built to run in real-time 

and produce the best results for object recognition. To accurately diagnose the fetal heart, Fuzzy 

Attention U-Net (FAU-Net) was recently established for object localisation. Create a system for 

automated localization and object recognition in both normal and aberrant anatomical structures 

including ASD, VSD, and AVSD using ultrasound pictures.  The Spatial Pyramid Pooling - Fast (SPPF) 
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aspect in the YOLOv5 framework gathers local features of different sizes and combines these using 

multistage max-pooling to expand the field of reception while altering the extent of each feature map. 

By combining the low-level localization data obtained from the backbone network with the high-level 

semantic features, the neck segment implements a Path Aggregation Network (PANet) architecture via 

top-down and bottom-up pathways. Even with a small training sample of US images, the YOLOv5 

model demonstrated favourable outcomes for fetal cardiac identification, indicating its potential for fetal 

cardiac recognition. The validation outcomes show that the model may be used to a variety of fetal heart 

anatomies. The suggested model has good promise for CHD with three defective components and 

promising fetal cardiac detection. The automated categorization of fetal cardiac models will be created 

in the future. When a fetal heart is examined during pregnancy, the categorized system will automatically 

identify if it has a septal defect based on the fetal cardiac region that is important that YOLOv5 has 

retrieved. 
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