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Abstract 

Attaining a prolonged network lifetime, maximized coverage, and high performance are vital design 

factors that have to be maintained in a Wireless Sensor Networks (WSN). Such factors are dependent 

on the stability and optimality of the protocol employed to formulate Sensor Nodes (SNs) into 

mutual clusters that effectively work around fulfilling specific performance goals. SEP is a 

heterogeneity-aware protocol implemented based on Low-Energy Adaptive Clustering Hierarchy 

(LEACH) protocol, designed to prolong the stability period of the network defined by the time 

interval before the death of the first SN. Nevertheless, adaptability in design is a scheme that has not 

been extensively applied in the formation of WSN election protocols. Adapt-𝑃 is a probabilistic 

model for adaptivity designed to evolve the probability of selecting a cluster-head based on the 

active status of the WSN, represented by the residual energy of and distances between SNs. 

However, the adaptive probability 𝑃adp formalized in Adapt-𝑃 is developed based on the remaining 

number of SNs 휁 and optimal clustering κmax, yet 𝑃adp does not implement the probabilistic ratios 

of energy and distance factors in the network. Furthermore, Adapt-𝑃 does not localize cluster-heads 

in the first round properly because of its reliance on distance computations defined in LEACH, that 

might result in uneven distribution of cluster-heads in the WSN area and hence might at some rounds 

yield inefficient consumption of energy. This paper utilizes 𝑘-means++ and Adapt-𝑃 to propose 

𝑃c𝜅max-means++ clustering algorithm that better manages the distribution of cluster-heads and 

produces an enhanced performance. The algorithm employs an optimized cluster-head election 

probability 𝑃c developed based on energy-based 𝑃𝜂(𝑗,𝑖) and distance-based 𝑃𝜓(𝑗,𝑖) quality 

probabilities along with the adaptive probability 𝑃adp, utilizing the energy 휀 and distance optimality 

𝑑opt factors. Furthermore, the algorithm utilizes the optimal clustering 𝜅max derived in Adapt-𝑃 to 

perform adaptive clustering through 𝜅max-means++. The proposed 𝑃c𝜅max-means++ is compared with 

the energy-based algorithm 𝑃𝜂휀𝜅max-means++ and distance-based 𝑃𝜓𝑑opt𝜅max-means++ algorithm, 

and has shown an optimized performance in term of residual energy and stability period of the 

network.  

Keywords: Energy-Efficient Clustering, Cluster-Head Selection, SEP, LEACH. 

1 Introduction 

The extensive usage of WSNs in various real-time applications has recently paid researcher attention 

toward developing effective optimization mechanisms to achieve an improved performance and design 
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goals of the network (Gouda, O., 2020) (Zagrouba, R., 2021) (Arjunan, S., 2019) (Agarwal, V., 2022). 

A WSN is generally defined as a large-scale network environment with many low-powered SNs that 

require efficient schemes for data aggregation and transmission (Ogundile, O.O., 2017) (Lin, J., 2017) 

(Chiang, M., 2016) (Kaur, G., 2021). Controlling energy consumption, scalability, reliability, and 

topology-based difficulties are primary challenges that should be considered when such mechanisms are 

developed (Alomari, M.F., 2022) (Jukuntla, A., 2022). 

A WSN suffers from limited computational, communication, and energy capabilities that lower the 

lifetime and coverage of SNs (Wu, M., 2022) (Smail, O., 2017) (Pushpa, G., 2022). Such nodes are often 

deployed in areas where energy is a constraint (Razaque, A., 2016) (Juwaied, A., 2018) (Kumawat, S., 

2022). It is typical that a WSN is divided into clusters to reduce the complexity of data transmission and 

achieve energy saving (Bidaki, M., 2016) (Zafor, H., 2022) (Pitchaimanickam, B., 2020), in which 

cluster-heads are elected to gather and send SN data to a Base Station (BS) for further processing and 

analysis. Each SN has the potential of becoming a cluster-head in each round, where energy is among 

the multiple factors that play the role of such election process. Hence, SN deployments and clustering 

mechanisms are primary concerns to achieve maximum performance. 

Placement scenarios of SNs often involve random deployments in the sensor field. Such placements 

make it difficult to formulate clusters that are required to effectively cover the field and account for 

performance goals of the WSN. Models in existing literature elect cluster-heads randomly in the first 

round. The election process in subsequent rounds chooses cluster-heads based on a criterion that 

typically considers conflicting factors such as residual energy of SNs, number of cluster-heads permitted 

per round, and probability of a SN becoming a cluster-head. Therefore, selection of cluster-heads is an 

optimization problem that plays a critical role in improving energy efficiency of SNs and network 

lifetime (Vijayan, P., 2022). 

2 Motivation 

Adaptability in design is a paradigm that has recently been involved in formulating communication 

models of WSNs. It is essential that a network is designed such that it is adaptive to state variations and 

operational contexts. Adapt-𝑃 (Suleiman, H., 2022) is a probabilistic model that employs adaptivity in 

the probability of selecting a cluster-head. An adaptive function is designed to dynamically evolve the 

probability based on the changed status of the WSN represented by the maximum number of cluster-

heads permitted per round, residual energy of SNs, and number of alive SNs remained in the WSN. 

Nonetheless, effectively initializing placements of cluster-heads in the first round facilitates the 

convergence toward distributing the role of cluster-head fairly among SNs in subsequent rounds, and 

most importantly helps effectively cover the WSN field throughout the network running-time. Such 

localizations are required to avoid depleting energy of a SN while other SNs are not. The 𝜅-means is a 

clustering algorithm that divides the space of nodes into 𝐾 clusters using the squared Euclidian distances. 

The main drawback of 𝜅-means is that localizing a centroid in a far place may end-up having no SNs 

associated with it. The 𝜅-means++ built upon the standard 𝜅-means algorithm is developed to overcome 

such drawbacks by controlling the initialization of clusters (Arthur, D., 2007). The 𝜅-means++ selects 

the first cluster-head uniformly at random in the first round, after which cluster-heads are selected with 

a probability based on the distance between each SN and the chosen cluster-head. 

Making active run-time clustering decisions in WSNs is therefore essential to maintain a stable 

performance. It is required that SNs are fairly elected to act as cluster-heads such that the WSN field is 
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uniformly covered and the energy is preserved to maximize the network’s lifetime. The adaptive 

probability 𝑃adp computed in Adapt-𝑃 manages the election process according to the evolved network 

status and thus highlights the need to investigate its usage within the 𝜅-means++ algorithm to derive a 

probabilistic model and formulate clusters that efficiently account for such conflicting objectives. 

3 Contributions 

An adaptable design is vital to cope with changes and variations occurred in the context of the 

networking environment. This paper presents the 𝑃c𝜅max-means++ clustering algorithm that produces an 

improved performance based on 𝑘-means++ and Adapt-𝑃 algorithms. Contributions of this paper are 

summarized as follows: 

• The optimal clustering 𝜅max derived in Adapt-𝑃 is employed in the context of 𝑘-means++ to 

adaptively control the formulation of the maximum number of clusters permitted per round, 

producing 𝜅max-means++. 

• Energy-based 𝑃𝜂휀𝜅max-means++ and distance-based 𝑃𝜓𝑑opt𝜅max-means++ clustering algorithms 

are respectively developed based on energy-based 𝑃𝜂(𝑗,𝑖) and distance-based 𝑃𝜓(𝑗,𝑖) quality 

probabilities, derived by utilizing the energy 휀 and distance optimality 𝑑opt factors. 

• A clustering algorithm 𝑃c𝜅max-means++ is developed based on a cluster-head election 

probability 𝑃c derived by utilizing the adaptive probability 𝑃adp formalized in Adapt-𝑃 along 

with the energy-based 𝑃𝜂(𝑗,𝑖) and the distance-based 𝑃𝜓(𝑗,𝑖) quality probabilities. 

In that, the deployment and clustering strategy is driven by adaptive decisions triggered by the 

election probability 𝑃c to reform clusters based on 𝜅max-means++. 

4 Background and Related Work 

Determining effective clustering and scheduling procedures for SNs are primary concerns in WSN so 

that network’s lifetime and QoS requirements are optimized (Mahboub, A., 2017) (Wu, M., 2022) 

(Mechta, D., 2014). Such procedures simplify the complexity and management of the network especially 

when its size increases (Pundir, S., 2019) (Butun, I., 2019). Existing works in the literature are mainly 

focused on LEACH-based and SEP-based algorithms that aim at prolonging the lifetime by producing 

energy-efficient clusters (Rami Reddy, M., 2023) (Singh, O., 2021) (Azzouz, I., 2022) (Yin, X., 2022). 

The LEACH protocol proposed by Heinzelman et al. (2002) (Heinzelman, W.R., 2000) randomly rotates 

the role of cluster-head among SNs to maximize their lifetimes and area of coverage. The mathematical 

model presented in LEACH computes the number of cluster-heads required to generate clusters, in 

which the LEACH algorithm outperforms static and Minimum Transmission Energy (MTE) algorithms. 

The SEP protocol proposed by Smaragdakis et al. (2004) accounts for heterogeneity of SNs by deploying 

nodes with different initial residual energy, in which they aim at prolonging the stability period defined 

by the time to death of the first SN. 

It is critical to assess the state of a network before a decision is made (Suleiman, H., 2022). 

Adaptability is employed in our previous work Adapt-𝑃 (Suleiman, H., 2021) to evaluate the network 

state, in which the probability of selecting a cluster-head is dynamically adapted according to state 

variations at run-time. Such a state is represented by the network structure, conditions, and percentage 

of alive SNs. A near-optimal distance between each cluster-head and its associated cluster-members is 

formulated based on LEACH such that the total energy consumption is mitigated. 
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Existing work in literature presents different models and mechanisms for energy management and 

lifetime enhancements in WSNs (Jamshed, M.A., 2022) (Mao, J., 2022) (Harun, H.B., 2022) (Chen, S., 

2023). For instance, Gawade et al. (2016) present a centralized energy-efficient distance-based routing 

to distribute energy uniformly between SNs. A distributed algorithm is proposed to select cluster-heads 

based on SN’s energy consumption and distance to the BS. Han et al. (2022) propose an energy-efficient 

clustering protocol for the energy harvesting-based WSNs. They attempt to maximize the network 

coverage by a control mechanism that adjusts the number of SNs permitted to enter the energy-

harvesting mode and the data transmission mode. Panchal et al. (2020) balance the load between clusters 

by calculating an energy-based threshold that identifies a SN as a cluster-head if its residual energy 

factor is greater than the threshold. Lim et al. (2011) present a WSN scheduling algorithm that adaptively 

forms sampling schedules for data gathering by finding temporal and spatial data correlations. 

The 𝜅-means algorithm has also been utilized to solve clustering problems in WSNs (Mishra, M., 

2019) (Periyasamy, S., 2016) (Ben Gouissem, B., 2022) (Kandari, B., 2014). For example, Periyasamy 

et al. (2016) present a modified κ-means algorithm that divides the space into clusters, each of which 

entails three cluster-heads simultaneously. The algorithm uses a mechanism to share the network load 

between the three cluster-heads of a cluster by having only one cluster-head active at a time. In this 

scenario, the algorithm reduces the number of times the clustering procedure has to be performed, 

increases the percentage of data packets transmitted to the BS, and reduces the energy consumption 

which as a result increases the network’s lifetime. 

Lehsaini et al. (2018) propose a routing scheme based on 𝜅-means clustering that facilitates 

transmission and distribution of loads fairly among cluster-heads. They present a re-affiliation phase to 

formulate clusters that are equal in size in terms of number of SNs, after which they compute the average 

number of members within clusters. Then, the SN whose cluster’s size is above the average joins a 

cluster at its border whose size is below the average. Li et al. (2018) proposes an efficient routing 

protocol based on 𝜅-means and fuzzy logic, in which the sink node uses 𝜅-means++ to divide the WSN 

into clusters and utilizes fuzzy rules to compute the value of SNs so that SNs with highest values are 

chosen to be cluster-heads. 

Wu et al. (2022) present a hybrid 𝜅-means and Canopy algorithms to produce energy-efficient routing 

protocol based on LEACH. The protocol aims at minimizing the load on the cluster-head by electing a 

vice cluster-head based on SN’s residual energy and the distance from SNs to the BS. Gouissem et al. 

(2022) use 𝜅-means algorithm with grid-based routing for energy-efficient WSN clustering. An optimal 

size of a grid is calculated by the BS, after which the 𝜅-means is utilized to determine the cluster-head 

in each grid-cell. Kandari et al. (2014) present a 𝑘-SEP algorithm that utilizes the 𝜅-means to form 

clusters until 50% of SNs die and then switch to random clustering. 

Meta-heuristic mechanisms are also employed to solve problems in WSNs (Gouda, O., 2020) 

(Bhushan, S., 2018) (Pal, R., 2020) (Zhang, Y., 2017) (Lata, S., 2020). Bhushan et al. (2018) combines 

the Genetic Algorithm (GA) and 𝜅-means clustering, in which the problem is formalized by finding an 

optimal number of clusters in a big search space of heterogeneous SNs such that energy is saved and 

network’s lifetime is maximized. Also, Pal et al. (2020) use the GA to produce clusters by modifying 

the set-up phase in LEACH. The algorithm defines a chromosome in a GA as a set of SNs available in 

the field. The fitness function of a chromosome depends on the cluster compactness, cluster separation, 

and normalized number of cluster-heads, with different weights for each factor. After evolving the GA, 

the chromosome with the minimum fitness value is selected to formalize clusters and their cluster-heads. 
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Lata et al. (2020) discuss the problem of existing decentralized WSN clustering that might possibly 

form clusters with cluster-heads elected to be both at the borderline of their clusters and near to each 

other, which accordingly could result in poor energy saving and lifetime enhancement of SNs. To 

overcome such drawbacks, they adopt a fuzzy approach to cluster SNs using a centralized mechanism 

in which they elect a cluster-head and a vice-cluster-head. Zhang et al. (2017) employ a distributed 

scheme to cluster SNs based on a fuzzy approach to decide whether a SN is qualified to act as a cluster-

head or not. The proposed algorithm considers residual energy of the SN assessed to be a cluster-head, 

as well as number and residual energy of neighbor SNs within a pre-defined transmission range. 

Furthermore, the Particle Swarm Optimization (PSO) algorithm has been utilized in forming clusters 

in WSNs (Guhan, T., 2021) (Rao, P.S., 2017) (Dohare, I., 2019) (Gamal, M., 2022). For instance, Guhan 

et al. (2021) apply the PSO to choose cluster-heads based on distance of transmission between SNs. Rao 

et al. (2017) develops a utility function employed in PSO to formulate clusters in which they account 

for residual energy of SNs, distances between SNs together, and distances of SNs to the sink node so 

that a cluster-member accurately joins a better cluster-head. In addition, Dohare et al. (2019) propose an 

energy-efficient clustering protocol for Internet of Things (IoTs) that combines 𝜅-means and PSO 

algorithms to form clusters and select cluster-heads, respectively. Gamal et al. (2022) propose a fuzzy 

logic LEACH-based technique to enhance the lifetime of a WSN. A hybrid PSO and 𝜅-means algorithms 

are utilized to create clusters, in which primary and secondary cluster-heads are selected using the fuzzy 

logic. 

Overall, it is of paramount importance to evaluate the states of the network and act adaptively at 

runtime so that energy is conserved, and the lifetime is maximized with the least cost. In this paper, the 

set-up phase in a WSN is reformed so that clusters are actively evolved based on network states. The 

adaptive probabilistic model presented in Adapt-𝑃 (Suleiman, H., 2021) is employed in 𝜅-means++ to 

formulate clusters and accurately evolve the network state according to its existing conditions. The 

maximum number of clusters 𝜅max optimized based on dopt is formalized in 𝜅-means++. The cluster-

head selection probability 𝑃adp is adapted based on number of alive SNs 휁, distances of cluster-members 

from their corresponding cluster-heads evolved in 𝜅-means++, and residual energy of SNs in the clusters. 

A probabilistic model is then derived to compute the probability value of a node to act as a cluster-head 

to accordingly compose clusters. 

5 Network Model 

The network model simulates a set 𝕊 of n stationary SNs distributed in a two-dimensional space of 𝑎x𝑎 

𝑚2 and supported with a single BS (sink) located in the middle of the field to process data, in which the 

BS is assumed to always have adequate computational and power supply for data transmission and 

analysis.  

𝕊 = {1,2,3, … , 𝑗, … , 𝑛}, ∀𝑗 ∈ [1, 𝑛]     (1) 

SNs in contrast are energy-constraint, yet the energy resided in each SN is sufficient to exchange 

data with other SNs and to reach the BS if the SN is required to act as a cluster-head. 

SNs deployed in the network are assumed to be heterogeneous, each of which starts with a particular 

initial amount of energy. The model in SEP is adopted in this paper to create two types of SNs according 

to their initial energy, namely normal and advanced SNs. The percentage of SNs that are advanced is 𝜈. 

A normal SN 𝑠𝑗 starts with an initial energy-level 휀init
𝑗

= 휀0
𝑗
 whilst an advanced SN starts with 휀init

𝑗
=

휀0
𝑗(1 + 𝑏), where 𝑏 ∈ 𝑍+ is a positive constant integer and 휀0

𝑗
 is the initial amount of energy reserved 
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in a SN 𝑠𝑗 at the time of deployment. Each cluster of SNs entails a single cluster-head and multiple 

cluster members. Each cluster-member is associated with only one cluster-head. A cluster-member does 

not directly transfer data to the BS, instead the cluster-member communicates with the BS via its 

associated cluster-head during its Time Division Multiple Access (TDMA) period. The communication 

channel is symmetric in which the energy required to transmit data packets from a source SN to a 

destination SN and vice versa is the same, for a given signal-to-noise ratio. 

6 Energy Model 

The data packet exchanged between SNs together, as well as between any SN and the BS, is assumed to 

have a fixed size represented by ℓ bits. The energy model described by Heinzelman et al. (2002) derives 

the energy consumption for a SN per data packet of size ℓ bits, in which a SN consumes energy to run 

its radio electronics and power amplifier.  

It is formulated that the total energy consumption is modeled by the energy 휀rx(ℓ) required to receive, 

energy 휀da(ℓ) to aggregate, and energy 휀tx(ℓ, 𝑑) to transmit a data packet of size ℓ bits over a distance 

𝑑 between source and destination SNs. Heinzelman et al. (2002) adopt two distance-based models: free-

space and multi-path fading. The free-space model is employed if the distance 𝑑 between SNs 

exchanging data packets is less than a distance threshold 𝑑0 (indicated by 𝑑 ≤ 𝑑0); otherwise, the multi-

path fading model is utilized (𝑑 > 𝑑0). 

A transmitter SN consumes energy 휀tx(ℓ, 𝑑) when a data packet of size ℓ bits is transferred over a 

distance 𝑑 between source and destination SNs. Such energy includes the energy 휀�̅� consumed per bit to 

run the transmitter’s radio electronics, the energy factor 휀fs required to run the power amplifier in the 

free-space (fs) model, and the energy amplification factor 휀mp required to run the power amplifier in the 

multi-path fading (mp) model, as follows: 

휀tx(ℓ, 𝑑) = {
ℓ휀�̅� + ℓ휀fs𝑑2, 𝑑 ≤ 𝑑0

ℓ휀�̅� + ℓ휀mp𝑑4, 𝑑 > 𝑑0
                                             (2) 

where the threshold distance 𝑑0 is represented by: 

𝑑0 = √
𝜀fs 

𝜀mp
       (3) 

For the threshold 𝑑0, the distance 𝑑 between a source SN and a destination SN decides whether to 

employ the free-space (fs) model or the multi-path (mp) fading model.  

In this paper, the free-space model (𝑑2) is utilized for intra-cluster data transmission because the 

distance 𝑑 is assumed to be 𝑑 ≤ 𝑑0, whereas the multi-path fading model (𝑑4) is used for data 

transmission between a cluster-head and the BS because the distance 𝑑 is assumed to be 𝑑 > 𝑑0.  

A receiver SN consumes energy 휀tx(ℓ) to only run the radio electronics, that is independent of the 

distance 𝑑 between SNs and is dissipated to receive a data packet of size ℓ bits as follows: 

휀rx(ℓ)  =  ℓ휀�̅�                      (4) 

where 휀�̅� is the energy consumed per bit to run the receiver’s radio electronics. The receiver as well 

consumes the energy 휀da(ℓ) to aggregate a data packet of size ℓ bits, that is equal to the receiving energy 

휀rx(ℓ) computed in equation 4.  
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7 Notations 

Parameters of the network simulation are shown in Table 1. It illustrates the maximum number of rounds, 

field dimensions (in meters), SN parameters, values for SNs’ heterogeneity, parameters of the energy 

model, distance and energy-based election probabilities and their derivatives, local and global quality 

probabilities, and model coefficients. 

Table 1: Summary of Notations 

Notation Definition  

𝒂 Dimension of the field 

𝒃 Positive constant integer 

ℂ Set of clusters 

𝒅𝟎 Distance threshold to distinguish between free-space and multi-path fading models 

𝒅bs Distance to BS 

𝒅opt Optimal distance between a cluster-head and its cluster-members 

𝑫(𝒔𝒋, 𝒉𝒊) Euclidian distance between a SN 𝑠𝑗 and a cluster-head ℎ𝑖 

𝑫(𝒔𝒋, 𝑶𝒊) Euclidian distance between a SN 𝑠𝑗 and a centroid 𝐶𝑖 

𝜺init
𝒋

 Initial energy of 𝑗th SN 

𝜺rx(𝓵) Energy required to receive a data packet of size ℓ bits 

𝜺tx(𝓵, 𝒅) Energy required to transmit a data packet of size ℓ bits over a distance 𝑑 

𝜺da(𝓵) Energy required to aggregate a data packet of size ℓ bits over a distance 𝑑 

𝜺�̅� Energy consumed per bit to run the transmitter and receiver radio electronics 

𝜺res
(𝒋,𝒊)

 Residual energy-level of SN 𝑠𝑗 in a cluster 𝐶𝑖 

𝜺init
(𝒋,𝒊)

 Initial energy-level of SN 𝑠𝑗 in a cluster 𝐶𝑖 

𝜺avg
𝒊  Average energy-level of a cluster 𝐶𝑖 

𝜺fs Energy factor required to run a power amplifier in a free-space (fs) model 

𝜺mp Energy amplification factor required to run a power amplifier in multi-path fading (mp) model 

𝒉𝒊 𝑖th cluster-head 

ℍ Set of cluster-heads 

𝒊 ID of a cluster 

𝒋 ID of a SN 

𝜿max Maximum number of clusters per round 

𝓵 Size of data packets in bits 

𝒏 Total number of SNs in the field 

𝑵𝒊 Number of SNs within cluster 𝑖 

𝜼(𝒋, 𝒊) Energy coefficient of SN 𝑠𝑗 in a cluster 𝐶𝑖 
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𝑶𝒊 Centroid of a cluster 𝐶𝑖 

𝑷𝝈(𝒋,𝒊) Deviation-based distance quality probability of a SN 𝑠𝑗 in a cluster 𝐶𝑖 

𝑷adp Adaptive probability of selecting a cluster-head 

𝑷c Cluster-head selection probability 

𝑷𝜼(𝒋,𝒊) Energy-based election probability 

𝑷𝝍(𝒋,𝒊) Distance-based election probability 

𝑷𝝃(𝒋,𝒊) Global quality probability for SN 𝑠𝑗 in cluster 𝐶𝑖 

𝑷𝝆(𝒋,𝒊) Local quality probability for SN 𝑠𝑗 in cluster 𝐶𝑖 

𝑷𝜸(𝒋,𝒊) Optimal-oriented distance quality probability of a SN 𝑠𝑗 

𝑷𝝈(𝒋,𝒊) Deviation-based distance quality probability of SN 𝑠𝑗 in cluster 𝐶𝑖 

∆𝒊 Deviation of SNs within cluster 𝐶𝑖 

𝜹𝒊 Energy-based distance coefficient within cluster 𝐶𝑖 

𝒔𝒋 𝑗th SN 

𝒔𝒓
𝒊  𝑟th SN in the cluster 𝑖 

𝕊 Set of SNs 

𝝂 Percentage of advanced SNs 

𝝍(𝒋, 𝒊) Distance coefficient of SN 𝑠𝑗 in a cluster 𝐶𝑖 

𝒙𝒊, 𝒙𝒋 𝑥 coordinate of the SN 𝑠𝑗 

𝒚𝒊, 𝒚𝒋 𝑦 coordinate of the centroid 𝑂𝑗 

𝜻 Number of remaining SNs in a round 

𝚽(𝐣) Stability function 

8 Mathematical Model 

The model of Adapt-𝑃 (Suleiman, H., 2022) formulates the cluster optimality 𝜅max per round required 

to mitigate the energy consumption of the network to be: 

𝜅max =
𝑎2

2𝜋𝑑opt
2   

          = √
𝑛𝜀fs

2𝜋𝜀mp
 

𝑎

𝑑bs
2                      (5) 

in which 𝑑opt is derived to be the optimal distance between a cluster-head and its cluster-members 

required to reduce the network’s energy consumption, whereas 𝑑bs is the distance from a particular 

cluster-head to the BS. 

The 𝑃c𝜅max-means++ clustering algorithm starts by utilizing the optimal clustering 𝜅max to define the 

initial, optimal number of clusters to employ in 𝜅-means++ algorithm as follows: 

ℂ = {1,2,3, … , 𝑖, … , 𝜅max}     (6) 

ℍ = {1,2,3, … , 𝑖, … , 𝜅max}     (7) 
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where 𝐶𝑖 denotes a cluster with ID 𝑖 from the set of clusters ℂ supported with a cluster-head ℎ𝑖 from 

the set of cluster-heads ℍ, in which 𝑁𝑖 represents the number of SNs within the cluster 𝑖 (including the 

cluster-head ℎ𝑖) and 𝑠𝑟
𝑖  represents the 𝑟th SN in the cluster 𝑖 where 𝑟 ∈ [1, 𝑁𝑖]. 

Cluster-Head Selection Probability 𝑷c 

The LEACH algorithm adopts a fixed probability to select a cluster-head by utilizing the 𝑇(𝑠) function 

(Heinzelman, W.B., 2002). A cluster-head hi in Adapt-𝑃 (Suleiman, H., 2022) is identified based on the 

probability 𝑃adp of a SN to become a cluster-head that has been actively adaptive to the state of WSN, 

characterized by the optimal number of cluster-heads 𝜅max permitted per round and the number of alive 

SNs 휁 remained in the network as follows: 

𝑃adp =
𝜅max 

𝜁
       (8) 

To formulate centroid locations of clusters and accordingly specify SNs to act as cluster-heads, a 

centroid 𝑂𝑖 is selected uniformly at random from the set 𝕊 of SNs. Initially, a cluster 𝐶𝑖 is composed of 

the set 𝕊 of SNs as follows: 

𝐶𝑖 = {𝕊} = {𝑠1, 𝑠2, 𝑠3, … , 𝑠𝑗 , … , 𝑠𝑛}     (9) 

The SN 𝑠𝑗 nearest to the centroid 𝑂𝑖 is selected to act as a cluster-head ℎ𝑖 for the initial cluster 𝐶𝑖, 

using the Euclidian formula as follows: 

(𝑠𝑗 ≡ ℎ𝑖) = argmin ∥ 𝐷(𝑠𝑗 , 𝑂𝑖) ∥2 = √(𝑥𝑗 − 𝑥𝑖)2 + (𝑦𝑗 − 𝑦𝑖)2, ∀𝑗 ∈ [1, 𝑛]   (10) 

Where [(𝑥𝑗, 𝑦𝑗), (𝑥𝑖, 𝑦𝑖)] are 𝑥 and 𝑦 coordinates of the SN 𝑠𝑗 and the centroid 𝑂𝑖, respectively. 

After which, a distance 𝐷(𝑠𝑗 , ℎ𝑖) is computed from each SN 𝑠𝑗 within ℂ to the specified cluster-head 

ℎ𝑖 using the Euclidian formula as follows: 

𝐷(𝑠𝑗 , ℎ𝑖) = √(𝑥𝑗 − 𝑥𝑖)
2

+ (𝑦𝑗 − 𝑦𝑖)
2

, ∀𝑗 ∈ [1, 𝑛]    (11) 

Where [(𝑥𝑗, 𝑦𝑗), (𝑥𝑖, 𝑦𝑖)]  are 𝑥 and 𝑦 coordinates of the SN 𝑠𝑗 and the cluster-head ℎ𝑖, respectively. 

The cluster-head ℎ𝑖 is defined to be the closest to the centroid of the cluster 𝐶𝑖. Then, another center ℎ𝑖∗  

is chosen with a probability proportional to 𝐷(𝑠𝑗, ℎ𝑖∗)
2
. The procedure is repeated until 𝜅max cluster-

heads are localized, in which a SN 𝑠𝑗 would be associated with a cluster-head ℎ𝑖 using the typical 𝜅-

means algorithm as follows: 

𝑠𝑗 ∈ 𝐶𝑖 = argmin ∥ 𝐷(𝑠𝑗 , ℎ𝑖) ∥2 ≡ (𝐷(𝑠𝑗 , ℎ𝑖) < 𝐷(𝑠𝑗, ℎ𝑖∗))   (12) 

Where 𝑖 ≠ 𝑖∗ and ℎ𝑖 belongs to the cluster 𝐶𝑖, for ∀𝑗 ∈ [1, 𝑛] and ∀𝑖∗ ∈ [1, 𝜅max]. 

The 𝑃c𝜅max-means++ clustering algorithm formulates that a SN 𝑠𝑗 joins a cluster-head ℎ𝑖 based on 

not only the distance 𝐷(𝑠𝑗 , ℎ𝑖) between them, but also the residual energy 휀𝑖 of the cluster-head ℎ𝑖. For 

this purpose, a stability function Φ(j) is developed based on energy and distance factors of SNs to decide 

on the cluster-head ℎ𝑖 to which the SN 𝑠𝑗 should belong. The 𝑃c𝜅max-means++ utilizes 𝜅-means++ to 

initialize the first cluster-head and establishes subsequent 𝜅max clusters with a cluster-head selection 

probability 𝑃c formulated as follows: 

𝑃c = 𝑃adp × 𝑃𝜂(𝑗,𝑖) × 𝑃𝜓(𝑗,𝑖), ∀𝑖 ∈ [1, 𝜅max]    (13) 

In which 𝑃𝜂(𝑗,𝑖) is an energy-based quality probability and 𝑃𝜓(𝑗,𝑖) is a distance-based quality 

probability explained in the following sections. 



𝑃c휀𝜅max-Means++: Adapt-𝑃 Driven by Energy and Distance 

Quality Probabilities Based on 𝜅-Means++ for the Stable 

Election Protocol (SEP) 

                                         Husam Suleiman. 

 

137 

Energy-based Probability 𝑷𝜼(𝒋,𝒊) 

The 𝑃𝜂(𝑗,𝑖) is developed to measure the quality of a cluster-head ℎ𝑖 (a SN 𝑠𝑗 in a cluster 𝐶𝑖) according to 

its residual (remaining) energy-level 휀res
(j,i)

, initial energy-level  휀init
(j,i)

 at the time of deployment, and the 

average energy-level  휀avg
i  of the cluster 𝐶𝑖 to which the SN 𝑠𝑗 belongs. As such, the average residual 

energy 휀avg
i  of the cluster 𝐶𝑖 in a particular epoch is calculated as follows: 

휀avg
𝑖 =

1

𝑁𝑖
∑ 휀res

(𝑟,𝑖)𝑁𝑖
𝑟=1 , ∀𝑟 ∈ [1, 𝑁𝑖]     (14) 

Then, a global quality probability 𝑃𝜉(𝑗,𝑖) of a SN acting as a cluster-head is formulated by considering 

SN’s residual energy 휀res
(𝑗,𝑖)

 with respect to the average energy 휀avg
𝑖  of the cluster 𝐶𝑖 to which the SN 𝑠𝑗 

belongs to, as follows: 

𝑃ξ(j,i) = {
𝜀res

(𝑗,𝑖)

𝜀avg
𝑖 , if 휀res

(𝑗,𝑖)
< 휀avg

𝑖

1, otherwise

    (15) 

In which the global quality probability 𝑃𝜉(𝑗,𝑖) is set to 1 if 휀res
(𝑗,𝑖)

 is higher than 휀avg
𝑖  so that an over-

estimation is avoided. Such a setting qualifies a SN to act as a cluster-head by increasing its election 

probability as long as its residual energy 휀res
(𝑗,𝑖)

 is within a particular limit. 

In addition, a local quality probability 𝑃𝜌(𝑗,𝑖) of a SN to act as a cluster-head is calculated by a typical 

consideration of its residual energy 휀res
(𝑗,𝑖)

 with respect to its initial energy 휀init
(𝑗,𝑖)

 at the time of deployment 

as follows: 

𝑃𝜌(𝑗,𝑖) =
𝜀res

(𝑗,𝑖)

𝜀init
(𝑗,𝑖)      (16) 

After that, the energy-based probability 𝑃𝜂(𝑗,𝑖) evaluates the energy effectiveness of a SN 𝑠𝑗 to act as 

a cluster-head ℎ𝑖 as follows: 

𝑃𝜂(𝑗,𝑖) = 𝑃𝜌(𝑗,𝑖) × 𝑃𝜉(𝑗,𝑖)     (17) 

Which assesses the quality value of the SN 𝑠𝑗 to which other SNs would potentially consider joining 

if it acts as a cluster-head, and accordingly the goal is to maximize 𝑃𝜂(𝑗,𝑖) as follows: 

maximize (𝑃𝜂(𝑗,𝑖)) ≡ maximize (𝑃𝜌(𝑗,𝑖) × 𝑃𝜉(𝑗,𝑖))    (18) 

Distance-based Probability 𝑷𝝍(𝒋,𝒊) 

The 𝑃𝜓(𝑗,𝑖) is developed to evaluate and measure the positioning 𝐷(𝑠𝑗 , ℎ𝑖) of a SN 𝑠𝑗 toward a cluster-

head, relevant to the distance optimality 𝑑opt formalized in Adapt-𝑃 (Suleiman, H., 2022) to reduce 

energy consumption derived to be as follows: 

𝑑opt = √
𝜀mp𝑎2

2𝜋𝑛𝜀fs
 

4
𝑑bs     (19) 

An optimal-oriented distance quality probability 𝑃𝛾(𝑗,𝑖) of a SN 𝑠𝑗 is formulated based on distance 

optimality 𝑑opt with respect to a cluster-head ℎ𝑖 that would potentially join as follows: 

𝑃γ(j,i) = {

𝑑opt

𝐷(𝑠𝑗,ℎ𝑖)
, if 𝐷(𝑠𝑗, ℎ𝑖) > 𝑑opt

1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
     (20) 
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In which the quality ratio 𝑃𝛾(𝑗,𝑖) is set to 1 if 𝐷(𝑠𝑗, ℎ𝑖) is less than 𝑑opt because the SN 𝑠𝑗 is within 

the range of optimal distance 𝑑opt derived to achieve energy-efficient clustering. Such organization 

increases the probability of a SN 𝑠𝑗 joining the cluster-head hi as long as the SN 𝑠𝑗 is within the optimal 

range of the cluster formulation.  

Furthermore, a typical deviation-based distance quality probability 𝑃𝜎(𝑗,𝑖) is derived to measure how 

a SN 𝑠𝑗 is distant from a cluster-head hi based on 𝑑opt. First, the deviation ∆𝑖 of all SNs within a cluster 

𝐶𝑖 is calculated with respect to 𝑑opt as follows: 

∆𝑖 = ∑ (𝐷(𝑠𝑗 , ℎ𝑖)  − 𝑑opt)
2𝑁𝑖

𝑗=1      (21) 

Then, an energy-based distance coefficient 𝛿𝑖 is computed to measure the deviation ∆𝑖 of a SN 𝑠𝑗 

relevant to all SNs 𝑁𝑖 within the cluster 𝐶𝑖 as follows: 

𝛿𝑖 = √
∆𝑖

𝑁𝑖
      (22) 

Accordingly, the deviation-based distance quality probability 𝑃𝜎(𝑗,𝑖) of a SN 𝑠𝑗 in a cluster 𝐶𝑖 with 

𝑁𝑖 SNs associated with its cluster-head ℎ𝑖 is calculated as follows: 

𝑃σ(𝑗,𝑖) = {

𝐷2(𝑠𝑗,ℎ𝑖)

∑ 𝐷2(𝑠𝑗,ℎ𝑖)
𝑁𝑖
𝑗=1

 , if 𝐷(𝑠𝑗 , ℎ𝑖) > 𝛿𝑖

1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

    (23) 

In which the quality ratio 𝑃𝜎(𝑗,𝑖) is set to 1 if energy-based distance coefficient 𝛿𝑖 is higher than 

𝐷(𝑠𝑗 , ℎ𝑖) because the SN 𝑠𝑗 is within the range of its 𝛿𝑖 derived previously. 

After that, the distance-based probability 𝑃𝜓(𝑗,𝑖) is formulated as follows:  

𝑃𝜓(𝑗,𝑖) = 𝑃𝛾(𝑗,𝑖) × 𝑃𝜎(𝑗,𝑖)     (24) 

Which assesses the efficacy value of the distance of a SN 𝑠𝑗 toward a cluster-head ℎ𝑖 that would 

consider joining, and accordingly the goal is to maximize the 𝑃𝜓(𝑗,𝑖) as follows. 

maximize(𝑃𝜓(𝑗,𝑖)) ≡ maximize(𝑃𝛾(𝑗,𝑖) × 𝑃𝜎(𝑗,𝑖))    (25) 

Formalizing 𝚽(𝐣) 

The objective is to maximize the stability function Φ(j) for a SN 𝑠𝑗 joining a cluster-head ℎ𝑖 so that 

energy-efficient clusters are produced, as follows: 

maximize(Φ(j)) ≡ maximize(휂(𝑗, 𝑖) × 𝜓(𝑗, 𝑖))    (26) 

In which the Φ(j) is computed based on the energy quality factor 휂(𝑗, 𝑖) of a potential cluster-head 

ℎ𝑖 and the distance quality factor 𝜓(𝑗, 𝑖) of the SN 𝑠𝑗 entailed with the cluster-head ℎ𝑖, in which the 

cluster-head election probability 𝑃c is maximized: 

maximize(𝑃c) ≡ maximize(𝑃adp × 𝑃𝜂(𝑗,𝑖) × 𝑃𝜓(𝑗,𝑖))    (27) 

9 Evaluation 

The 𝑃c𝜅max-means++ clustering is employed in the SEP algorithm, in which the probability 𝑃c of selecting 

a cluster-head ℎ𝑖 in a cluster 𝐶𝑖 is developed based on the adaptive probability 𝑃adp, energy-based 

probability 𝑃𝜂, and distance-based probability 𝑃𝜓 to accurately formulate clusters from the set 𝕊 of SNs. 
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The design is also developed based on the LEACH algorithm to compare the performance of such 

clustering schemes together. MATLAB is the platform used to simulate and demonstrate the efficacy of 

such algorithms. 

Analysis of Remaining Energy 

The 𝑃c𝜅max-means++, 𝑃𝜂휀𝜅max-means++, and 𝑃𝜓𝑑opt𝜅max-means++ algorithms are proposed and 

compared by analyzing the remaining energy in SNs. The performance is analyzed by measuring the 

impacts of energy coefficient 휂(𝑗, 𝑖), distance coefficient 𝜓(𝑗, 𝑖), and stability function Φ(j) on the 

residual energy of SNs. 

Impact of Energy Coefficient 𝜼(𝒋, 𝒊) 

The probability 𝑃𝜂 of electing a cluster-head ℎ𝑖, the energy coefficient 휀 of the SN, and the optimal 

number 𝜅max of cluster-heads permitted per round are utilized to develop energy-based algorithms that 

are 𝑃𝜂휀𝜅max-means++, 𝑃𝜂휀𝜅max-SEP, and 𝑃𝜂휀𝜅max-LEACH. Their development is based on 𝜅-means++, 

SEP, and LEACH algorithms. 

 

Figure 1: Impact of Energy Coefficient 휂(𝑗, 𝑖) on Remaining Energy 

Figure 1 compares the residual energy of the set 𝕊 of SNs for such energy-based algorithms. It is 

shown that the performance of 𝑃𝜂휀𝜅max-means++ algorithm increases the remaining energy of SNs as 

compared to the rest of proposed algorithms. The reason is that the cluster-head selection probability is 

evolved based on the energy-based probabilistic value 𝑃𝜂(𝑗,𝑖) of a potential cluster-head ℎ𝑖 and the 

adaptive probability 𝑃adp of selecting a cluster-head. The 𝑃𝜂(𝑗,𝑖) effectively boosts a SN 𝑠𝑗 to become a 

cluster-head by maximizing SN’s global 𝑃𝜉(𝑗,𝑖) and local 𝑃𝜌(𝑗,𝑖) probabilistic ratios. The global 𝑃𝜉(𝑗,𝑖) 

qualifies a SN 𝑠𝑗 to become a cluster-head in a cluster 𝐶𝑖 by increasing its election probability provided 

that its residual energy 휀res
(𝑗,𝑖)

 is higher than the average 휀avg
𝑖  residual energy of SNs of the cluster 𝐶𝑖. On 

the other side, the local 𝑃𝜌(𝑗,𝑖) increases the probability of a SN 𝑠𝑗 to become a cluster-head if its residual 

energy 휀res
(𝑗,𝑖)

 is close to its initial energy 휀init
(𝑗,𝑖)

. It is asserted that both probabilistic ratios tend to set and 

thus increase the probability of a SN to become a cluster-head as long as the quality value of SN’s energy 

is above the specified threshold. 

In addition, the 𝑃𝜂휀𝜅max-means++ typically saves and facilitates the time to classify a large WSN. 

Although the 𝜅-means++ is computationally expensive in which centroids in the first rounds are initially 
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located in various places in the field, the convergence running-time required to construct optimal clusters 

is minimal and the intra-cluster variance is mitigated. The optimal clustering 𝜅max calculated in advance 

supports the election process by avoiding any over- or under-estimation to the number and size of 

clusters to initiate. Such optimality through 𝜅max within 𝜅-means++ mitigates any extra communication 

between SNs so that their clustering layouts are uniformly formulated, and accordingly energy of SNs 

would be saved. Incorporating the probability 𝑃𝜂 provides a high priority to a SN whose energy is above 

prespecified energy thresholds in which the probability is set to 1 as long as the residual energy 휀res
(𝑗,𝑖)

 of 

the SN 𝑠𝑗 is within its specified acceptable margins. Such election enforcements potentially promote the 

likelihood of selecting the SN to act as a cluster-head. 

The 𝑃𝜂휀𝜅max-SEP outperforms the 𝑃𝜂휀𝜅max-LEACH at the beginning by preserving more energy in 

SNs 휁 remained in the network. The SEP protocol actually accounts for SNs’ heterogeneity, in which 

SEP considers advanced and normal SNs with different initial energy levels whereas the formulation of 

LEACH protocol does not generally take into consideration such energy variations. The 𝑃𝜂휀𝜅max-

LEACH algorithm shows a little enhancement at the end of rounds, however, impacts of 𝑃𝜂 and 𝜅max 

coefficients along with the energy factor 휀 typically preserve the performance of SEP-based and 

LEACH-based algorithms to generally make them perform similarly. Furthermore, the average energy 

saving per round for the proposed algorithms in the specified range shown in Figure 1 reflects such 

findings. For instance, the 𝑃𝜂휀𝜅max-means++ algorithm preserves the energy of SNs by showing an 

amount of 6.58 Jouls/round. The 𝑃𝜂휀𝜅max-SEP and 𝑃𝜂휀𝜅max-LEACH algorithms have approximately 

3.97 and 4.56 Jouls/round, respectively. The SEP algorithm has the lowest average energy, showing an 

amount of 2.6 Jouls/round. The 𝑃𝜂휀𝜅max-means++ has overall improved the performance and thus 

network lifetime, as well as efficiently covers the networking space. 

Impact of Distance Coefficient 𝝍(𝒋, 𝒊) 

The optimal distance 𝑑opt is utilized to propose 𝑃𝜓𝑑opt𝜅max-means++, 𝑃𝜓𝑑opt𝜅max-SEP, and 

𝑃𝜓𝑑opt𝜅max-LEACH algorithms. The performance of such distance-based clustering schemes is 

evaluated using the distance-based probability 𝑃𝜓(𝑗,𝑖) and distance factor 𝜓(𝑗, 𝑖). 

The residual energy of the set 𝕊 of SNs based on the distance-based algorithms is shown in Figure 2. 

The 𝑃𝜓𝑑opt𝜅max-means++ outperforms the rest of clustering schemes, in which the distance-based 

probabilistic value 𝑃𝜓(𝑗,𝑖) adapts the cluster-head selection probability based on its distance factor 

𝜓(𝑗, 𝑖). In such formulations, the distance quality probability 𝑃𝛾(𝑗,𝑖) of a SN 𝑠𝑗 is increased provided that 

SN’s position 𝐷(𝑠𝑗, ℎ𝑖) is localized within an acceptable margin of the optimal distance 𝑑opt of the 

cluster 𝐶𝑖, in which the quality ratio of the SN 𝑠𝑗 is thus increased. In contrast, the probability 𝑃𝛾(𝑗,𝑖) 

decreases with the increment of the distance 𝐷(𝑠𝑗, ℎ𝑖) from the cluster-head ℎ𝑖. In addition, the deviation 

∆𝑗,𝑖 of SNs within a cluster 𝐶𝑖 proportionally impacts the distance coefficient 𝛿𝑗,𝑖 based on 𝑑opt to 

formulate energy-efficient clusters. The deviation-based distance probabilistic ratio 𝑃𝜎(𝑗,𝑖) is affected 

by such formations and increased provided that the SN 𝑠𝑗 is localized in a place close to its distance 

coefficient 𝛿𝑗,𝑖, which overall increases the SN’s distance-based probability 𝑃𝜓(𝑗,𝑖). 
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Figure 2: Impact of Distance Coefficient 𝜓(𝑗, 𝑖) on Remaining Energy 

Furthermore, Figure 2 demonstrates that the efficacy of the 𝑃𝜓𝑑opt𝜅max-means++ algorithm in 

clustering SNs in an efficient manner. The distance optimality 𝑑opt controls the distances within clusters, 

in which clusters are accordingly formed with respect to 𝜅max so that extra cluster formations are 

avoided. The election probability also promotes SNs to act as cluster-heads by setting the distance-based 

probability 𝑃𝜓(𝑗,𝑖) to 1 for SNs that are distant by at most 𝑑opt from their corresponding cluster-heads. 

The 𝑃𝜓𝑑opt𝜅max-SEP outperforms the 𝑃𝜓𝑑opt𝜅max-LEACH, which in turn surpasses the SEP algorithm. 

The average amount of energy saving in the specified range represented in Figure 2 for 𝑃𝜓𝑑opt𝜅max-

means++ reaches around 4.34 Jouls/round, whereas 𝑃𝜓𝑑opt𝜅max-SEP and 𝑃𝜓𝑑opt𝜅max-LEACH 

algorithms show respectively 3.84 and 3.21 Jouls/round. The SEP algorithm as discussed formerly 

depicts 2.6 Jouls/round. Such findings demonstrate the effective performance proven by 𝑃𝜓𝑑opt𝜅max-

means++ as compared to the proposed distance-based algorithms, as well as corroborates the 

performance of energy-based algorithms developed previously in which the 𝑃𝜂휀𝜅max-means++ 

outperforms the rest of proposed algorithms. 

Impact of Stability Function 𝚽(𝐣) 

The performance effect of 𝑃c𝜅max-means++ is evaluated with 𝑃𝜂휀𝜅max-means++ and 𝑃𝜓𝑑opt𝜅max-

means++ clustering schemes. Figure 3 demonstrates the effectiveness of incorporating the election 

probability 𝑃c of a cluster-head ℎ𝑖 in which 𝑃c𝜅max-means++ outperforms the rest of proposed algorithms. 

The cluster-head election probability 𝑃c is evolved by employing the energy-based 𝑃𝜂(𝑗,𝑖) and distance-

based 𝑃𝜓(𝑗,𝑖) quality probabilities, in which the stability function Φ(j) is optimized by maximizing the 

energy quality factor 휂(𝑗, 𝑖) and distance quality factor 𝜓(𝑗, 𝑖) of the SN 𝑠𝑗. 

 

Figure 3: Impact of Stability Function 𝛷(𝑗) on Remaining Energy 
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The adaptive election probability 𝑃adp within 𝑃c is dependent on SN states as a whole, in which the 

selection probability of a SN 𝑠𝑗 is evolved along with the remaining number 휁 of alive SNs in the field 

and the optimal clustering 𝜅max formulated in a round according to SN distributions and states. The 

derivation and optimization of 𝜅max within 𝑃adp and hence within 𝑃c limits the number of cluster 

formations in a particular epoch based on the optimal distance dopt such that the residual energy of the 

network is maximized, which in turn formulates clusters that uniformly cover the networking space and 

efficiently preserve the residual energy of SNs. The average amount of energy saving in the specified 

range in Figure 3 for 𝑃c𝜅max-means++ is around 7.82 Jouls/round, as compared to 𝑃𝜂휀𝜅max-means++ and 

𝑃𝜓𝑑opt𝜅max-means++ algorithms that respectively preserve an average energy of 6.58 Jouls/round and 

4.34 Jouls/round. 

Analysis of Remaining SNs 𝜻 

The performance of the proposed clustering algorithms based on the remaining number 휁 of SNs depicts 

the likelihood of dead SNs in the networking field. The election probability selected to manage the 

distribution and number of remained SNs in the network impacts the value of 휁. The following analyzes 

the effect of the energy-based probability 𝑃𝜂(𝑗,𝑖) driven by the energy quality factor 휂(𝑗, 𝑖), the distance-

based probability 𝑃𝜓(𝑗,𝑖) driven by the distance quality factor 𝜓(𝑗, 𝑖), and the election probability 𝑃c 

driven by the stability function Φ(j). 

Analysis of 𝜻 Driven by Energy-based Election Probability 𝑷𝜼(𝒋,𝒊) 

The percentage of remained 휁 SNs in the network is analyzed as a result of employing the probability 

𝑃𝜂(𝑗,𝑖) in the formulation of clusters. Figure 4 demonstrates the efficacy of 𝑃𝜂휀𝜅max-means++ clustering 

algorithm in improving 휁. Employing 𝑃𝜂(𝑗,𝑖) along with 𝜅max-means++ clustering scheme fosters and 

stabilizes the process of cluster formation. The election probability 𝑃𝜂(𝑗,𝑖) of a SN to act as a cluster-

head supports such enhancements due to its development based on energy consideration in which the 

global 𝑃𝜌(𝑗,𝑖) and local 𝑃𝜉(𝑗,𝑖) probabilistic ratios are maximized, and potentially can be set to 1 provided 

that the SN 𝑠𝑗 maintains a residual energy 휀res
(𝑗,𝑖)

 close to its specified 휀init
(𝑗,𝑖)

 and 휀avg
𝑖  margins. 

 

Figure 4: Analysis of 휁 Driven by the Probability 𝑃휂(𝑗, 𝑖) 

The 𝑃𝜂휀𝜅max-SEP increases the percentage 휁 of remained SNs more than the 𝑃𝜂휀𝜅max-LEACH, 

however both algorithms are outperformed by 𝑃𝜂휀𝜅max-means++ due to the incorporation of the energy-
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based election probability 𝑃𝜂(𝑗,𝑖) shaped by the optimal clustering 𝜅max within the deployment of 𝜅max-

means++ clustering scheme. In addition, the stability period defined by the time to death of the first SN 

varies from an algorithm to another. The 𝑃𝜂휀𝜅max-means++ takes 1260 rounds to announce the death of 

the first SN in the field, whereas 𝑃𝜂휀𝜅max-SEP and 𝑃𝜂휀𝜅max-LEACH algorithms take respectively 1190 

and 1163 rounds to flag the death of the first SN. The SEP algorithm takes 999 rounds. The 𝑃𝜂휀𝜅max-

means++ algorithm has overall managed the decrement of 휁 to maintain a feasible network coverage and 

a maximized residual energy in SNs. 

Analysis of 𝜻 Driven by Distance-based Election Probability 𝑷𝝍(𝒋,𝒊) 

The percentage of remained SNs 휁 in the network is analyzed with respect to the election probability 

𝑃𝜓(𝑗,𝑖) developed based on the optimal distance 𝑑opt derived to formulate energy-efficient clusters. 

Figure 5 elucidates the efficacy of 𝑃𝜓𝑑opt𝜅max-means++, in which the algorithm stabilizes the curve of 

remained SNs by forming clusters based on distance optimality dopt such that the residual energy of 

SNs is maximized. The distance-based election probability 𝑃𝜓(𝑗,𝑖) integrated with 𝜅max-means++ 

supports a steady selection of cluster-heads based on the optimal clustering κmax and forms size-

balanced clusters based on the optimal distance dopt for energy efficiency, which in turn increases the 

percentage of 휁 in the network. It is shown in Figure 5 that the 𝑃𝜓𝑑opt𝜅max-means++ outperforms 

𝑃𝜓𝑑opt𝜅max-SEP and 𝑃𝜓𝑑opt𝜅max-LEACH algorithms. The time required to death of the first SN in 

𝑃𝜓𝑑opt𝜅max-means++ is 1225 rounds, whereas the time to death of the first SN in 𝑃𝜓𝑑opt𝜅max-SEP and 

𝑃𝜓𝑑opt𝜅max-LEACH algorithms is respectively 1076 and 1125 rounds. 

 

Figure 5: Analysis of 휁 Driven by the Probability 𝑃𝜓(𝑗, 𝑖) 

Analysis of 𝜻 Driven by Election Probability 𝑷c 

The efficacy of employing the election probability 𝑃c with the 𝜅max-means++ clustering is described in 

Figure 6, in which the 𝑃c𝜅max-means++ is compared with the energy-based 𝑃𝜂휀𝜅max-means++ and 

distance-based 𝑃𝜓𝑑opt𝜅max-means++ clustering schemes. The probability 𝑃c is continuously evolved 

with variations occurred in network states which as a result promotes the impact of the adaptive 

probability 𝑃adp controlled by the remaining SNs 휁 and the optimal clustering 𝜅max of the network. The 

dependency of 𝑃c on energy-based 𝑃𝜂(𝑗,𝑖) and distance-based 𝑃𝜓(𝑗,𝑖) quality probabilities manages the 

formation of clusters by increasing the likelihood of qualified SNs to become cluster-heads. 
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It is also shown that the energy-based clustering in 𝑃𝜂휀𝜅max-means++ performs better than the 

distance-based clustering in 𝑃𝜓𝑑opt𝜅max-means++, however, they both at some points behave similarly. 

The involvement of 휀 typically influences the performance of the energy-based algorithm, yet the 

optimal distance 𝑑opt is also derived based on energy consideration 휀 and optimal clustering 𝜅max which 

makes the distance-based algorithm 𝑃𝜓𝑑opt𝜅max-means++ exhibit a reasonable performance. The 

stability period of energy-based 𝑃𝜂휀𝜅max-means++ clustering reaches 1260 rounds, whereas it is 1225 

rounds for the distance-based 𝑃𝜓𝑑opt𝜅max-means++ clustering. In contrast, the stability period of the 

𝑃c𝜅max-means++ clustering algorithm reaches 1289 rounds, which performs better than other algorithms. 

 

Figure 6: Analysis of 휁 Driven by the Probability 𝑃𝑐 

10 Conclusion and Future Work 

It is found that the 𝑃c𝜅max-means++ clustering algorithm demonstrates an optimized performance in 

increasing the residual energy of SNs, stability period, and likelihood of remained SNs 휁 in the network. 

Adaptability in the design has been applied by evolving the cluster-head election probability 𝑃c 

developed based on energy-based probability 𝑃𝜂(𝑗,𝑖), distance-based probability 𝑃𝜓(𝑗,𝑖), and adaptive 

probability 𝑃adp. It is observed that the election probability 𝑃c has boosted the effectiveness of the 

algorithm to formulate clusters such that energy of SNs is preserved and network lifetime is prolonged. 

The involvement of energy 휀, optimal clustering 𝜅max, and distance optimality 𝑑opt factors derived in 

Adapt-𝑃 along with the 𝑘-means++ clustering scheme has led the development of energy-based 𝑃𝜂휀𝜅max-

means++ and distance-based 𝑃𝜓𝑑opt𝜅max-means++ clustering algorithms, and thus to further enhance the 

performance in which the optimal clustering κmax has been utilized to formulate adaptive clustering 

through 𝜅max-means++ algorithm. As a future work, it is noticed that the genetic algorithm has a potential 

application in such clustering problems in which a chromosome can be formed based on a set of SNs 

and a fitness function for each chromosome can accordingly be derived based on energy requirements 

of SNs. 
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