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Abstract 

Wireless sensor networks (WSNs) consist of many sensor nodes that are densely deployed 

throughout a randomized geographical area to monitor, detect, and analyze various physical 

phenomena. The primary obstacle encountered in WSNs pertains to the significant reliance of sensor 

nodes on finite battery power for wireless data transfer. Sensors as a crucial element inside Cyber-

Physical Systems (CPS) renders them vulnerable to failures arising from intricate surroundings, 

substandard manufacturing, and the passage of time. Various anomalies can appear within WSNs, 

mostly attributed to defects such as hardware and software malfunctions and anomalies and assaults 

initiated by unauthorized individuals. These anomalies significantly impact the overall integrity and 

completeness of the data gathered by the networks. Therefore, it is imperative to provide a critical 

mechanism for the early detection of faults, even in the presence of constraints imposed by the sensor 

nodes. Machine Learning (ML) techniques encompass a range of approaches that may be employed 

to identify and diagnose sensor node faults inside a network. This paper presents a novel Energy-

aware and Context-aware fault detection framework (ECFDF) that utilizes the Extra-Trees algorithm 

(ETA) for fault detection in WSNs. To assess the effectiveness of the suggested methodology for 

identifying context-aware faults (CAF), a simulated WSN scenario is created. This scenario consists 

of data from humidity and temperature sensors and is designed to emulate severe low-intensity 
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problems. This study examines six often-seen categories of sensor fault, including drift, hard-

over/bias, spike, erratic/precision, stuck, and data loss. The ECFDF approach utilizes an Energy-

Efficient Fuzzy Logic Adaptive Clustering Hierarchy (EE-FLACH) algorithm to select a Super 

Cluster Head (SCH) within WSNs. The SCH is responsible for achieving optimal energy 

consumption within the network, and this selection process facilitates the early detection of faults. 

The results of the simulation indicate that the ECFDF technique has superior performance in terms 

of Fault Detection Accuracy (FDA), False-Positive Rate (FPR), and Mean Residual Energy (MRE) 

when compared to other detection and classification methods. 

Keywords: Wireless Sensor Networks, Super Cluster Head, EE-FLACH, Context-aware Faults, 

Extra-Trees Algorithm, Energy-aware Faults.   

1 Introduction 

The inclusion of sensors has become a crucial component in contemporary technologies such as the 

Internet of Things (IoT) and CPSs due to the emergence of smart applications (Ding, D., 2019). These 

systems acquire data from sensors deployed in the surrounding environment and transmit it to a central 

processing unit. The processing unit then analyzes the data to extract relevant information, which is used 

to determine and execute a suitable course of action. The occurrence of errors inside the sensor can result 

in unfavorable outcomes, as the effectiveness of these systems is strongly dependent on the accuracy 

and integrity of the data they gather. For example, the integrity of a product may be compromised if a 

sensor in an industrial CPS becomes corrupted. Similarly, the safety of miners might be jeopardized if a 

sensor reading in a wireless underground sensor network, which is employed to monitor underground 

mines, is manipulated. Hence, it is crucial to consistently verify the state of a sensor and promptly 

identify any deviations to prevent such occurrences (Reppa, V., 2014). 

The sensor nodes can autonomously establish the sensor network's structure upon deployment within 

the designated area. These networks have significant interactions with the physical environment. The 

acquisition of data from WSNs can be achieved through the cooperative efforts of sensor nodes without 

human involvement. The radio frequency is the determining factor for the data transmission radius in a 

wireless sensor network. In the network, the communication between sensor nodes is established to 

ensure that each node's memory, computational power, and energy resources are constrained (Temene, 

N., 2022). 

One of the primary challenges in the progression of WSNs is the limited power supplies compared 

to wired networks. This limitation results in sensor nodes expending energy during the reception, 

processing, and transmission of information to other nodes within the network. Consequently, the energy 

required for these operations is sourced from the individual batteries integrated into each node. 

WSNs are commonly deployed in areas characterized by high-risk conditions, rendering the recharging 

or replacement of batteries nearly unfeasible. The efficacy of these networks is significantly contingent 

upon the duration of the network's existence and the extent of its geographical reach. Using energy-

conscious algorithms in developing sensor networks with extended lifespans is of utmost importance 
(Mishra, P.K., 2020). 

Hence, the network's longevity is entirely contingent upon the power supply of its sensor nodes. This 

constraint gives rise to issues that serve as the foundation for several scholarly discussions concerning 

the lifespan of nodes and their energy usage. To conserve energy in sensor nodes, a cluster-based 

methodology has been devised wherein a subset of nodes can only communicate with the base station, 

facilitating energy preservation. Choosing an appropriate cluster head (CH) is a viable method that 

effectively mitigates energy usage. The utilization of clustering in WSNs has been shown to enhance the 
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scalability of the network (Shamshirband, S., 2019). Clustering is a technique that effectively reduces 

the direct reliance of sensor nodes on the base station and mitigates the impact of multiple traffic loads. 

Additionally, it facilitates decentralizing decision-making processes for sending information at the local 

level. 

In recent years, significant study has been conducted in the field of sensor defect detection and 

diagnosis, aiming to mitigate any potential negative consequences arising from sensor failure (Xu, C., 

2019). In general, fault diagnostic methodologies may be classified into four categories: knowledge-

based, signal-based, model-based, and hybrid procedures. Nevertheless, with the advent of cloud 

computing and ML, the knowledge-based (or data-driven) approach has emerged as a viable technique 

for detecting, diagnosing, and predicting outcomes by analyzing sensor activity using extensive datasets 

(Beghi, A., 2016). 

This research study introduces an energy-aware and context-aware fault detection framework 

(ECFDF) that uses the ETA for fault detection in WSNs. To evaluate the efficacy of the proposed 

approach for detecting CAF, a simulated WSN scenario is generated (Akin, O., 2022). The ECFDF 

methodology employs the EE-FLACH algorithm to effectively choose a Super Cluster Head (SCH) in 

Wireless Sensor Networks (WSNs). The SCH is tasked to attain optimal energy usage throughout the 

network. This selection procedure serves to enable the timely identification of faults. 

2 Related Works 

WSNs have gained widespread use across various domains, encompassing environmental surveillance, 

medical care, smart cities, and industry automation. However, the deployment of these networks is 

frequently carried out under demanding and resource-limited settings, rendering them vulnerable to 

malfunctions and failures. This literature review examines the changing terrain of fault detection 

frameworks in WSNs, specifically emphasizing the incorporation of energy-aware and context-aware 

methodologies. 

Saeedi Emadi and Mazinani (2018) proposed a new WSN anomaly detection method. The proposed 

method uses DBSCAN and SVM (Saeedi Emadi, H., 2018). This study preprocesses sensor data, clusters 

anomalies with DBSCAN, and classifies anomalies with SVM. Implementation involves applying the 

algorithm to sensor network data to detect real-time anomalies. The output values include abnormalities 

and their categorization. This method detects and classifies anomalies well. This method has drawbacks, 

like the difficulty of tweaking parameters and its sensitivity to data distribution. 

According to Cheng et al. (2018), support vector regression (SVR) is used to detect defects in wireless 

sensor networks. The proposed method involves training SVR models with sensor data to predict sensor 

values (Cheng, Y., 2018). SVR models are deployed to various sensors during implementation to enable 

distributed fault detection. Output values include expected measurements and fault detection results. 

One benefit of this approach is distributed fault detection and prediction. This method has drawbacks, 

including model training overhead and sensor resource limits. 

Jan et al. (2021) presented a machine learning-based architecture for distributed sensor-fault 

detection and diagnosis (Jan, S.U., 2021). The method involves collecting sensor data, preprocessing it, 

and using machine learning models to identify and diagnose faults. The framework is deployed into a 

sensor network to detect faults quickly. The output values include defect diagnoses. This method can 

identify and analyze errors, yielding practical and effective recommendations. However, the model's 

complicated implementation and resource use have drawbacks. 
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Jan et al. (2017) proposed a method for classifying sensor faults using SVM and statistical time-

domain data. The method involves extracting features from sensor data, training SVM models, and 

categorizing sensor issues (Jan, S.U., 2017). The implementation process involves deploying an SVM-

based classification system in a sensor network. The output values contain categorized sensor defects. 

One benefit of this method is fault classification accuracy. Its feature selection sensitivity and labeled 

training data requirement are drawbacks. 

Noshad et al. (2019) proposed a random forest classifier-based WSN defect detection method. The 

process includes sensor data collection, random forest model training, and defect classification (Noshad, 

Z., 2019). Implementation involves sending the random forest classifier to sensors to find faults. Output 

values are categorized as sensor defects. One benefit of this method is its robust fault detection. One 

drawback of this method is increased model complexity and resource requirements. 

Shamshirband et al. (2019) have presented FCS-MBFLEACH, an energy-efficient fault detection 

system for WSNs. A clustering algorithm is developed that prioritizes energy efficiency in sensor 

networks and defect detection systems (Shamshirband, S., 2019). Mobile sensor networks are used to 

implement the technology. Output values include energy-efficient network configurations and problems. 

The benefits of this method include energy-aware defect detection and network efficiency. However, 

adaptability to changing network topologies has drawbacks. 

Saeed et al. (2021) introduced context-aware fault diagnosis in their study. ML techniques detect 

sensor faults in this system (Saeed, U., 2021). The method involves collecting contextual data, 

preprocessing it, and training ML models. The scheme is deployed to sensors for context-aware problem 

diagnostics. Output values include sensor defects and contextual information. One benefit of this 

approach is context-aware problem detection. However, integrating context data and deploying the 

model may be difficult. 

Incorporating energy-aware and context-aware defect detection exhibits significant potential for 

enhancing the dependability and sustainability of WSNs. Utilizing this architecture presents numerous 

benefits, such as an extended lifespan of the network, heightened accuracy in problem detection, and 

increased allocation of resources. 

3 Energy-aware and Context-aware Fault Detection Framework (ECFDF) 

By incorporating context-awareness into energy management approaches, the framework can make 

educated judgments on allocating energy resources based on specific circumstances and conditions. 

When critical portions of the network are identified or certain periods are determined to have a greater 

probability of errors, the framework can assign additional energy resources towards activities such as 

monitoring, data gathering, and fault detection. On the other hand, in non-critical domains or under 

circumstances with minimal levels of risk, it is possible to optimize energy use to preserve power. 

Faults are regarded as deviations from the standard functioning of sensor output. The flaws 

mentioned above might exhibit various characteristics, including transience, persistence, or 

intermittence, contingent upon the specific circumstances. Prime factors contributing to faults include 

network congestion, complex situations, substandard production, and sensor aging. Sensor defects are 

classified as deviations from typical operations within a certain trend. Mathematically, the functionality 

of a sensor functioning under normal conditions may be represented as Equation (1):  

𝑆𝑓𝑛 = 𝐹(𝑡) + 𝛾         (1) 
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In this equation, 𝐹(𝑡) represents the sensor output at a given time 𝑡, and 𝛾 represents the presence of 

noise. In an ideal scenario, the signal 𝑆𝑓𝑛 would be equivalent to the function 𝐹(𝑡). However, in practical 

settings, a sensor without faults would possess a certain level of related error denoted as 𝛾. The research 

investigates six frequently encountered sensor faults, which may be obtained by manipulating the above 

equation, as elucidated in reference (Muhammed, T., 2017). 

 

Figure 1: Various Faults Following their Respective Contextual Settings 

Fig. 1 depicts the various faults following their respective contextual settings. The contexts 

mentioned above can be described as the internal or external surroundings of the sensor that are 

responsible for initiating defects. As seen in Fig. 1, it is possible for a problem to originate from either 

a single cause or several causes. Drift and hard-over faults are predominantly attributed to a calibration 

fault, but a data-loss fault can be attributed to either calibration or hardware issues. Additionally, spike 

faults can be attributed to several factors, such as hardware malfunctions, communication issues, or 

battery deficiencies. An erratic fault can be attributed to a problem in the battery, but several faults, 

including hardware, communication, battery, and clipping, might initiate a stuck fault. 

Classification Methods 

Classification, as a kind of supervised learning, is a method used to assign data findings to specific 

categories based on patterns and information derived from training data. The classification task is 

commonly categorized into three main types: binary, multi-class, and multi-label classification. Fig. 2 

illustrates these classification approaches. 

 

Figure 2: Fault Classification Approaches 
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• Binary classification is a classification task that requires categorizing data into two distinct classes. 

A set of data observations, sometimes called data samples, may only be categorized into one of two 

distinct groups. In sensor fault detection, data findings are classified into two categories: normal 

and abnormal. 

• Multi-class classification involves the analysis of a solitary target variable representing distinct 

classes. This approach encompasses a set of classes that are not mutually exclusive, meaning that 

they can overlap or coexist. Data findings are classified into many categories according to their 

differences. In sensor fault diagnosis, the process involves categorizing data observations from 

various classes into specific target variables. These target variables often include a normal class, a 

drift fault class, a hard-over fault class, and other relevant classes. 

• Multi-label classification is a technique used to manage many target variables inside a single class. 

This methodology is utilized when the data observations of a particular group simultaneously 

pertain to two or more variables of interest. In the case involving a trapped sensor fault class, it is 

seen that data concurrently pertains to numerous target variables, including hardware, 

communication, battery, and clipping. 

Extra-Trees Algorithm 

The Extra-Trees (ET) method, often referred to as Extremely Randomized Trees, is a technique that 

utilizes an ensemble of Decision Trees (DTs). The ensemble approach involves amalgamating numerous 

DTs and utilizing a fused network to make informed judgments. The RF algorithm exhibits the same 

flow, although with two notable distinctions. The theory behind ET involves random splitting events, 

whereas RF employs the best-splitting approach. Furthermore, in the case of ET, the findings are 

removed without replacement (𝐵𝑜𝑜𝑡𝑠𝑡𝑟𝑎𝑝 =  𝐹𝑎𝑙𝑠𝑒), but in the case of RF, the insights are removed 

with replacement. 

Moreover, the act of node splitting inside a tree refers to the procedure of converting a root node that 

is non-homogeneous into split/child nodes that are homogenous. The random splitting strategy employed 

by the Extra Trees algorithm involves dividing the root node into random child nodes. In contrast, the 

Random Forest algorithm utilizes a best-splitting approach that transforms the root node into 

homogenous child nodes. One of the primary benefits of using ETA instead of Random Forest (RF) or 

other ML classifiers is its ability to reduce variance and bias errors significantly. The presence of a large 

variance can lead to the issue of overfitting, while a high bias might induce the problem of underfitting. 

Additionally, the capacity of evolutionary algorithms to handle randomness enhances their 

computational efficiency and robustness in the presence of noisy information. 

The workflow of the ETA may be elucidated through a series of four fundamental steps.  

Step 1: The training set 𝑋 is provided as input at the root node.  

Step 2: The algorithm proceeds by selecting 𝑁 samples from 𝑋 in a random manner, ensuring that 

each sample is chosen only once and not replaced.  

Step 3: A tree is constructed based on the learning samples. At each child node, a random selection 

of 𝐹 characteristics is made, and the node is broken into arbitrary cut-points.  

Step 4: The ensemble tree (ET) consolidates the results obtained from each tree by iteratively 

executing the second and third steps a total of 𝑇 times.  
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In addition, it is crucial to consider some key factors while constructing the ET model. These 

parameters include the ensemble size 𝑘, the number of randomly selected features 𝐹, and the least 

number of samples required to divide a node (𝑛𝑙𝑒𝑎𝑠𝑡). 

EE-FLACH Algorithm for Selecting a SCH 

The EE-FLACH method demonstrates suitability when selecting an SCH to minimize energy usage 

within a distributed system. To compute the fault detection rate by examining the network's nodes, 

applying the EE-FLACH algorithm to the proposed ECFDF approach has been chosen to provide 

energy-aware fault detection. The utilization of this methodology will yield significant benefits in terms 

of early fault identification, primarily due to its ability to minimize energy usage when compared to the 

MB-FLEACH, one SVM, and fuzzy one SVM techniques (Shamshirband, S., 2019). Consequently, 

using this approach will extend the network's operational duration. The algorithm for EE-FLACH is 

depicted in Algorithm 1. 

Algorithm 1: EE-FLACH 

Training Phase: 

Input: Collection of sensor nodes, network characteristics, and limitations, such as energy thresholds, fuzzy 

logic membership functions and rules, and the communication model. 

Output: The fuzzy logic parameters and the criterion for selecting the SCH. 

Step 1: Initialization 

Set up the network's basic settings, such as the cluster count 𝐾, the initial fuzzy logic parameters, and the 

membership functions. 

Assign sensor nodes arbitrary or predetermined beginning energy levels. 

Step 2: Cluster Formation 

Based on energy levels, sensor nodes choose themselves to be CHs. 

Utilizing predetermined membership functions and pertinent characteristics (such as residual energy and 

proximity to neighbors), determine each node's fuzzy membership value for CH candidacy. 

As CH candidates, pick the nodes with the greatest fuzzy membership values. 

Step 3: Fuzzy Logic-Based CH Selection 

Use fuzzy logic principles to assess CH prospects. 

Consider variables like network load, residual energy, and the distance to prospective CHs. 

Based on these criteria, determine a weighted score for each CH candidate. 

Choose the CH candidate for the cluster that received the highest weighted score. 

Step 4: Data Transmission and Aggregation 

Each cluster's sensor nodes send information to its own CH. 

CHs gather and combine data from cluster members to save energy use while transmitting data. 

Step 5: Energy Monitoring 

Keep an eye on CHs' energy levels at all times. 

Determine the network's CH energy levels' weighted average. 

Modify the fuzzy logic's settings based on the measured performance metrics and energy levels. 

Step 6: SCH Selection Criteria Determination 

Based on the fuzzy logic parameters and the observed network circumstances, determine the criteria for 

choosing the SCH. 

Define the SCH membership procedures and criteria. 

Output: 

The results of the training phase are SCH selection criteria and fuzzy logic parameters. 
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Testing Phase: 

Input: Set of network's sensor nodes. SCH selection criteria derived from the training phase and fuzzy logic 

parameters 

Output: SCH selection output 

Step 1: Cluster Formation 

Based on their energy levels, sensor nodes choose themselves as CHs. 

Utilizing predetermined membership functions and pertinent characteristics (such as residual energy and 

distance to neighbors), determine each node's fuzzy membership value for CH candidacy. 

As CH candidates, pick the nodes with the greatest fuzzy membership values. 

Step 2: Fuzzy Logic-Based CH Selection 

To assess CH candidates, use the SCH selection criteria that you got from the training step together with 

fuzzy logic rules. 

Consider variables like network load, residual energy, and the distance to prospective CHs. 

Based on these criteria, determine a weighted score for each CH candidate. 

Choose the CH candidate for the cluster that received the highest weighted score. 

Step 3: SCH Election 

To assess the CHs in the network, use fuzzy logic principles and the SCH selection criteria learned during 

the training phase. 

Consider elements like CH energy levels, network reach, and effectiveness of data aggregation. 

Create a weighted score for each CH using the information above. 

Choose the SCH for the whole network as the CH with the highest weighted score. 

Output 

The result of the testing process is the chosen SCH. 

The training and testing parts of the EE-FLACH algorithm for SCH selection in WSNs are described 

individually in these algorithmic steps. The testing phase utilizes these parameters to choose a SCH 

based on real-time network circumstances. The training phase is in charge of establishing fuzzy logic 

parameters and SCH selection criteria. 

4 Results and Discussion 

The distribution of nodes within the areas is random. The performance of the suggested approach was 

evaluated using a 10-fold cross-validation procedure to determine the average detection accuracy for the 

techniques. The simulation results were conducted with the Opnet software for the specified models. 

Simulations were conducted with an average duration of 40 minutes for each simulation. This process 

was repeated ten times to ensure statistical robustness. The fault node detection was evaluated during 

each simulation based on the fault detection system. 

The FDA metric quantifies the ratio of accurately identified defective nodes to the overall count of 

true fault nodes. The fault node detection methods were evaluated based on the average fault detection 

accuracy following the predefined scenarios. It is important to highlight that the efficient and accurate 

identification of faults in a network node results in minimal energy use. Consequently, it enhances the 

longevity of the network. 
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Figure 3: FDA Comparison of ML Algorithms for the Detection of Various Sensor Faults 

Fig. 3 shows the FDA comparison of ML algorithms for detecting sensor faults. The findings 

demonstrate the efficacy of these algorithms in identifying diverse sensor malfunctions. The ETA 

algorithm constantly demonstrates superior performance compared to other algorithms concerning all 

fault types, attaining the highest FDA values. Regarding Drift defects, the ETA exhibits a notable 

FDA score of 99.5%. Conversely, SVM and RF attain 86% and 97% success rates correspondingly. 

Comparable trends are seen in various fault classifications, including Bias, Spike, Erratic, Stuck, and 

Data-loss. This study's results highlight the ETA algorithm's enhanced fault identification capabilities 

compared to SVM and RF. This suggests that the ETA algorithm holds significant potential for 

guaranteeing the dependability and precision of sensor fault detection in WSNs. 

 

Figure 4: FDA for Various Approaches Used in Sensor Fault Detection 

Fig. 4 depicts the FDA for various approaches used in sensor fault detection. This study compares 

four distinct techniques, specifically the Proposed ECFDF, CAFD, FCS-MBFLEACH, and RF, 

concerning their FDA ratings. The findings suggest that the Proposed ECFDF consistently has the best 

FDA across all probability levels of sensor node defects, with exceptional levels of accuracy reaching 

up to 99.9%. The CAFD technique demonstrates a high level of performance, as seen by FDA values 

reaching as high as 95%. On the other hand, it can be observed that both the FCS-MBFLEACH and RF 

methodologies exhibit comparatively lower FDA scores over the whole range of probabilities, with RF 
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outperforming FCS-MBFLEACH. The results of this study emphasize the effectiveness of the proposed 

ECFDF method in detecting both context and energy-aware sensor faults. The findings demonstrate that 

the proposed ECFDF method exhibits higher accuracy than the other evaluated approaches. 

Consequently, it can be considered a robust option for guaranteeing the dependability and precision of 

fault detection in WSNs, even in diverse fault scenarios. 

 

Figure 5: FPR for Various Approaches Used in Sensor Fault Detection 

Fig. 5 shows the FPR for various approaches used in sensor fault detection. The FPR is a critical 

metric for identifying node defects within WSNs, sometimes called the false alarm rate. The criteria 

mentioned above are characterized by the division of the count of faultless nodes identified as faulty by 

the overall count of sensor nodes that are deemed faulty. The findings demonstrate that the 

ECFDF consistently exhibits the lowest FPR across all probability levels associated with sensor node 

failures. The FPR reaches values as low as 0.03 when the fault probability is 0.025. The CAFD using 

the FPR metric exhibits a closely trailing performance, characterized by relatively low values. On the 

other hand, it can be observed that the FCS-MBFLEACH and RF methodologies have elevated 

FPR along the whole spectrum of fault probability. The results of this study highlight the enhanced 

effectiveness of the proposed ECFDF approach in mitigating false alarms and enhancing the precision 

of fault detection, rendering it a resilient option for sensor fault detection in WSNs, particularly when 

the objective is to decrease false positives. 

 

Figure 6: MRE for Various Approaches Used in Sensor Fault Detection 
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Fig. 6 shows the MRE for various approaches used in sensor fault detection. The findings 

demonstrate that the proposed ECFDF strategy consistently exhibits the highest MRE levels compared 

to the other methods, regardless of the fault probability. This finding suggests that using the proposed 

ECFDF strategy in monitoring the network of sensor nodes leads to an increase in the amount of residual 

energy available after fault detection and recovery. As a result, the lifetime of the network is improved. 

On the contrary, the remaining techniques provide diminished MRE values, indicating the likelihood of 

increased energy consumption by sensor nodes during fault identification and restoration, potentially 

influencing the network's longevity. The results of this study highlight the energy-efficient 

characteristics of the proposed ECFDF method. This technique effectively conserves energy in sensor 

nodes and prolongs the lifespan of the entire network. Consequently, it emerges as a potential option for 

detecting sensor faults in WSNs. 

5 Conclusion 

This research introduces a novel framework known as the Energy-aware and Context-aware Fault 

Detection Framework (ECFDF), which employs the ETA for fault detection in WSNs. To evaluate the 

efficacy of the proposed approach for detecting CAF, a simulated WSN scenario is generated. The 

presented scenario encompasses data collected from humidity and temperature sensors, intending to 

simulate severe low-intensity issues. This research investigates six often-seen classifications of sensor 

faults, including drift, hard-over/bias, spike, erratic/precision, stuck, and data loss. The ECFDF 

methodology employs an Energy-Efficient Fuzzy Logic Adaptive Clustering Hierarchy (EE-FLACH) 

algorithm to facilitate the selection of a SCH in WSNs. The SCH is tasked to attain optimal energy usage 

within the network. Additionally, this process of selection enables the timely identification of faults. The 

findings suggest that the Proposed ECFDF consistently has the best FDA and lowest FPR across all 

probability levels of sensor node defects, with exceptional levels of accuracy and FPR reaching up to 

99.9% and 0.03, respectively. 
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