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Abstract 

Hackers usually send attacking commands through compromised hosts, called stepping-stones, for 

the purpose of decreasing the chance of being discovered. An effective approach for stepping-stone 

intrusion detection (SSID) is to estimate the length of a connection chain. This type of detection 

method is referred to as the network-based SSID (NSSID). All the existing NSSID approaches use 

the distribution of packet round-trip times (RTTs) to estimate the length of a connection chain. In 

this paper, we explore a novel approach – Fast Fourier Transformation (FFT) to analyze the 

distribution of packet RTTs. We first capture network packets from different stepping-stones in a 

connection chain, identify and match the Send and Echo packets in each stepping-stone. Packet 

RTTs can be obtained from matched pairs of packets. We then apply the FFT interpolation method 

to obtain a RTT time function and finally conduct FFT transformation to the RTT function in each 

stepping-stone host. Finally, we conduct a complete FFT analysis for the distribution of packet RTTs 

and present the FFT analysis results in this paper. 

Keywords: Stepping-Stone Intrusion, Intrusion Detection, Interpolation, Round-Trip Time, Fast 

Fourier Transformation. 

1 Introduction 

Most attackers, especially professionals, normally intrude a computing system indirectly, other than 

directly. The primary reason is that direct intrusion would expose their IPs to most detection systems. 

The attacking is easy to be detected, prevented, and even captured. In order to avoid to be detected and 

captured, indirectly invasion is widely used most professional attackers. With indirect attacking, hackers 

send their attacking commands via several compromised computing hosts called stepping-stones (Zhang, 

Y., 2000). Such an attack is referred to as a stepping-stone intrusion (SSI). An algorithm proposed to 

detect SSI is called stepping-stone intrusion detection (SSID). 

Since 1995, there were tons of approaches developed for SSID. These methods proposed to detect 

SSI can be classified into two categories. One is to check the incoming and outgoing network traffic of 

the same host to determine if there are any relayed connections. This type of approach is called host-
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based stepping-stone intrusion detection (HSSID). The other one is to estimate the length of a connection 

chain from a host to the corresponding victim host. Here the host where we run our SSID program is 

called a sensor. If the length is three or more, most likely, the session is launched by an attacker. This 

type of detection approach is called network-based SSID (NSSID). 

The first HSSID approach was proposed by S. Chen and L. T. Herblein (Staniford-Chen, S., 1995). 

In their research, a thumbprint method was proposed to identify a TCP connection. A relayed connection 

pair can be distinguished by comparing the thumbprints of an incoming and outgoing connection, 

respectively. A thumbprint in (Staniford-Chen, S., 1995) was defined as the summary of the contents of 

the packets captured in a connection for certain time period, for example, a period of 4 minutes. Relayed 

connection pair should have very similar thumbprints. Unfortunately, this method cannot be applicable 

to encrypted TCP sessions since the contents of the packets captured from such sessions are not readable. 

Another type of time thumbprint used to address the encryption issue was proposed by Y. Zhang and V. 

Paxson (Zhang, Y., 2000) in 2000. This time thumbprint is called time-based thumbprint (TTP), and the 

former one proposed in (Staniford-Chen, S., 1995) is called content-based thumbprint (CTP). A TTP in 

(Zhang, Y., 2000) is looking for the “ON” and “OFF” time gap in a sequence of packets captured from 

a TCP session. The “ON” time represents the time gap in the second unit there are packets active in the 

session. Similarly, the “OFF” time represents a time gap there are no packets active (Johnson, C., 2021). 

If a TCP session is observed for an enough time period, we should be able to get a sequence containing 

“ON” and “OFF” gaps. This sequence is normally unique for a session. It is defined as a TTP. Two 

closely related TTPs coming from the incoming and outgoing connection of a host respectively can 

identify a stepping-stone. Similar ideas as TTP were proposed from 2004 to 2021 including the findings 

and the algorithms proposed in (Yoda, K., 2000) by K. Yoda and H. Etoh, (Blum, A., 2004) by A. Blum, 

etc., (Wang, X., 2001) (Wang, X., 2003) by X. Wang, etc., (He, T., 2007) by T. He and L. Tong, and 

(Yang, J., 2015) (Yang, J., 2016) (Yang, J., 2021) by J. Yang, etc. All the host-based SSID methods 

suffer from not only high false-positive errors, but also, more or less, inability of resisting in intruders’ 

evasion using hacking techniques such as time-jittering or chaff perturbation. 

In order to reduce the high false-positive errors produced in the HSSID methods, another type of 

SSID approach was introduced to detect SSI by estimating a connection chain length and referred to as 

the network-based SSID (NSSID). False-positive detection errors can be reduced by using NSSID 

methods, but they may introduce false-negative errors if the victim host happens to be very close to the 

sensor host. In 2002, K. H. Yung (Yung, K.H., 2002) proposed the first NSSID method to estimate 

approximately the length of a downstream connection chain (from the victim host to the sensor). He 

used the ratio between the RTT of Echo packet received at the sensor host from the victim host and the 

RTT of ACK packet received at the sensor from its next adjacent host in the same connection chain. 

With Yung’s method, it is quite rough in estimating the downstream connection chain length, and thus 

it introduced high false-negative errors as discussed in (Yang, J., 2004). In order to estimate more 

accurately the downstream connection chain length, J. Yang and S. Huang (Yang, J., 2004) proposed a 

step-function method in 2005 by improving Yung’s approach proposed in (Yung, K.H., 2002). However, 

the method proposed in (Yang, J., 2004) only works well within a local area network. An improved 

detection approach for SSID developed by J. Yang and S. Huang (Yang, J., 2007) in 2007 works 

effectively in the context of Internet. This method estimates the downstream connection chain length via 

mining network traffic. In most recently, a method using k-means to mine network traffic to estimate 

the connection chain length was proposed by L. Wang, etc. (Yang, J., 2021). All these existing NSSID 

methods use the distribution of packet round-trip times (RTTs) to estimate the length of a connection 

chain. More or less, NSSID approaches are still affected by intruders’ session manipulation. 
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It is vital and significant to explore a new approach to address the above issues when intruders use 

hacking `techniques to evade detection, as well as to bring down significantly the false-negative and/or 

false-positive errors. In this paper, we conduct multidisciplinary research, and propose a novel idea of 

employing FFT signal processing technique to analyze the distribution of packet RTTs that is used to 

estimate a connection chain length for all the existing NSSID approaches. Using FFT signal processing 

technique to analyze the distribution of packet RTTs is a quite promising way to efficiently and precisely 

detect SSI as well as resist in intruders’ evasion by using various hacking tools. We summarize our novel 

idea to analyze the distribution of packet RTTs as followings: 

1. Collect the network traffic in a sensor from a TCP interactive session;  

2. Identify the Send and Echo packets from the collected traffic and match them;  

3. From the matched pair of Send and Echo packets, we can obtain the RTT for every Send packet;  

4. Obtain a RTT function with the timestamp of a Send packet as its x axis, and the value of each RTT 

as its y axis by using an interpolation method;  

5. Get the FFT value based on the RTT function. 

As our follow-up research, we will explore an appropriate filter to analyze the FFT values. We then 

apply the filtered FFT values to precisely estimate a connection chain length, and thus we are confident 

that we will be able to develop new NSSID approaches that will be resistant to intruders’ session 

manipulation with both false positive and negative errors significantly reduced, compared to all known 

SSID approaches. 

The rest of this paper is organized as followings. In section 2, we present some preliminaries needed 

for this research; in section 3, we describe the algorithm of RTT interpolation and it’s FFT; in section 4, 

we show some experimental results; and in section 5, we conclude the whole paper, and discuss the 

future research directions in this area. 

2 Preliminaries 

Before discussing FFT analysis for TCP/IP packets round-trip time (RTT) distribution, we first introduce 

the concepts of connection chain, Send and Echo packets, RTT and its distribution. 

Connection Chain 

Most hackers send attacking commands to a target system through a chain of stepping-stone hosts. An 

attacker can connect to a compromised host using a remote connection tool, such as OpenSSH, rlogin, 

or other similar tools. In this paper, we assume the tool OpenSSH is used to establish a connection chain 

by intruders. Similarly, the attacker can connect to the second compromised host, the third one, …, until 

to the targeted victim host.  

As we mentioned before, the compromised hosts are called stepping-stones. A connection chain made 

by an intruder is composed of the intruder’s host, stepping-stones, and the victim host. The amount of 

stepping-stone hosts can neither too large, nor too small. The more stepping-stone hosts used in a TCP 

connection chain, the safer for an intruder to launch their attacks. However, more stepping-stones used 

may cause a long network delay, as thus incur an inefficient communication. The program to detect an 

SSI must reside in one of the stepping-stone hosts compromised by intruders. This stepping-stone host 

is called a detection sensor, or a sensor. The connection from the victim host to the sensor is called 

downstream connection, and the one from the sensor back to the attacker’s host is called upstream 

connection. 
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Send and Echo Packets 

The tool OpenSSH can be used to make a TCP connection from a client-side port to the port 22 which 

is a SSH server-side port. When a connection is created, the user on the client side can operate the server 

via the connection chain. A request can send from the client to the server, and the server can process the 

received request to send response back to the client side. The request is called a Send packet, and the 

response to a request is referred to as the corresponding Echo packet. A large request, or response can 

be sent in multiple Send/Echo packets. 

Technically, in a detection program, a Send or Echo packet can be identified using the following 

algorithm. A Send packet is identified as a packet with the TCP port “22” as the destination port, the 

client side IP address as the source IP address, the server side IP address as the destination IP address, 

and the flag having “Push” bit set up. An Echo packet is identified as a packet with port “22” as the 

source port, the client side IP address as the destination IP address, the server side IP address as the 

source IP address, and the flag having “Push” bit set up. 

Round-Trip Time 

In a TCP connection, a Send packet may incur more than Echo packets sent from the server side. In 

some cases, the following scenarios may happen: 1) several Send packets may be echoed by a single 

Echo one; 2) two or more Send packets may be echoed by more than one Echo packets. Generally 

speaking, if the program OpenSSH is employed in an interactive TCP connection session, the matching 

between Send and Echo packets is not one on one. If we can match an Echo packet with its corresponding 

Send packet, the time gap between the two matched packets is called a round-trip time, short name RTT. 

The RTT between a matched pair of an Echo packet and its matched Send one in a connection chain 

can roughly reflect the connection chain length. Obviously, different matched pairs from the same 

connection chain may generate different RTT values. So the RTTs from different Send packets fluctuates 

along time. It is a function of timestamps of different Send packets. It was found that the values of RTTs 

from the same connection chain follows Poisson distribution (Yang, J., 2007). 

3 RTT Interpolation 

From each collected Send packet, if we can get its corresponding Echo packet, the RTT for the Send 

packet can be obtained. As we discussed before, the RTTs obtained from collected Send packets is a 

discrete function of time T. For the purpose of FFT analysis, we need to get the analog function of RTTs 

on T. Once we obtain RTT, and T which represents the timestamp of each Send packet, we can find a 

smooth function RTT = f(T) which pass through all points (RTT, T) of each test. 

It is well-known that the equation of a linear function passing through two points 

(𝑥1, 𝑦1) and (𝑥2, 𝑦2) can be constructed via Lagrange interpolation formula as follows, 

𝑓(𝑥) =
𝑥−𝑥1

𝑥2−𝑥1
(𝑦2 − 𝑦1) + 𝑦1.                            (1) 

Similarly, a smooth function passing through n points  (𝑥1, 𝑦1), (𝑥2, 𝑦2)⋯ , (𝑥𝑛, 𝑦𝑛)  can be 

constructed via the following Lagrange interpolation formula, 

  𝑓(𝑥) =
(𝑥−𝑥2)(𝑥−𝑥3)⋯(𝑥−𝑥𝑛)

(𝑥1−𝑥2)(𝑥1−𝑥3)⋯(𝑥1−𝑥𝑛)
𝑦1 

+
(𝑥 − 𝑥1)(𝑥 − 𝑥3)⋯ (𝑥 − 𝑥𝑛)

(𝑥2 − 𝑥1)(𝑥2 − 𝑥3)⋯ (𝑥2 − 𝑥𝑛)
𝑦2 
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 +⋯+
(𝑥 − 𝑥1)(𝑥 − 𝑥2)⋯ (𝑥 − 𝑥𝑛−1)

(𝑥𝑛 − 𝑥1)(𝑥𝑛 − 𝑥2)⋯ (𝑥𝑛 − 𝑥𝑛−1)
𝑦𝑛 

= ∑
∏ (𝑥−𝑥𝑘)𝑘≠𝑖

∏ (𝑥𝑖−𝑥𝑘)𝑘≠𝑖

𝑛
𝑖=1 𝑦𝑖               (2) 

For arbitrarily given 𝑛different points, what we obtain via the Lagrange interpolation formula is a 

polynomial function with the degree 𝑛 − 1. For any given point x, we can use the Lagrange interpolation 

formula to construct a polynomial function 𝑦 = 𝑓(𝑥) and calculate the predicted value 𝑦𝑝 for the given 

independent variable 𝑥 . However, it is difficult (sometimes even impossible) for us to find all the 

coefficients of polynomial function 𝑦 = 𝑓(𝑥), especially when 𝑛 > 10.  

The following is the Lagrange Interpolation algorithm:   

Algorithm: Lagrange Interpolation 

1. Start 

2. Read number of data n 

3. Read data 𝑥𝑖 and 𝑦𝑖 𝑓𝑜𝑟 𝑖 = 1 to 𝑛 

4. Read independent value 𝑥𝑝 

5. Initialize 𝑦𝑝 = 0 

6. For 𝑖 = 1 to 𝑛 

7.      Set 𝑝 = 1  

8.      For 𝑗 = 1 to 𝑛 

9.          If 𝑖 ≠ 𝑗 

10.               Calculate 𝑝 = 𝑝 ∗ (𝑥𝑝 − 𝑥𝑗)/(𝑥𝑖 − 𝑥𝑗) 

11.          End if 

12.      Next 𝑗 

13.           Calculate 𝑦𝑝 = 𝑦𝑝 + 𝑝 ∗ 𝑦𝑖 

14.      Next 𝑖 

15. Display 𝑦𝑝  as interpolate value 

16. Stop 

To find a Lagrange interpolation function, there are three different approaches that are described 

below: 

1) Use all the data points of a data set to find a Lagrange interpolation function 𝑦 = 𝑓(𝑥). Here and 

in what follows, we use the dataset obtained from AWS1 (an Amazon AWS server, please refer to 

Section IV.A for the detailed explanation) to show simulation result.  

In Table 1, it shows if the given independent variable 𝑡 belonging to the dataset T, that is 𝑡 ∈  𝑇𝑠, the 

predicted value 𝑦𝑝 is same as observed RTT values. However, if 𝑡′does not belong to the dataset T, the 

corresponding predict value 𝑦𝑝 is largely different from the observed RTTs values. This has been shown 

in Table 2. We obtained similar results for other AWS servers used. 

Table 1: Predict Value for any given 𝑡 ∈  𝑇𝑠 Data Set 

RTTs   𝒕 Predict𝒚𝒑  

316.430 0.0 316.43 

315.299 0.0159951 315.299 

314.902 0.0327875 314.902 

316.585 0.265648 316.585 

… … … 

314.799 8.5303443 314.799 

317.885 8.6271807 317.885 
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Table 2: Predict Value for any given 𝑡′ ∉ 𝑇𝑠 Data Set 

RTTs   𝒕′ Predict𝒚𝒑  

316.430 0.0   316.43 

315.299 0.0005 -1.4434e+34 

314.902 0.001 -2.6694e+34 

316.585 0.0015 -3.6974e+34 

… 0.0585 -1.0096e+35 

314.799 0.059 -1.0168e+35 

317.885 0.0595 -1.0236e+35 

2) With this method, we randomly selected a subset data of m points among all the n points in the 

dataset to find a Lagrange interpolation function 𝑦 = 𝑓(𝑥). Tables 3 and 4 show the interpolation results 

with 11 points selected out of 101 points. 

From the results shown in Table 3, it is trivial to see if the given independent variable 𝑡 belong to the 

selected subset, the predicted value 𝑦𝑝 is same as observed RTT values. However, if 𝑡′does not belong 

to the selected subset, the predicted value 𝑦𝑝 is very different from the observed RTT values.  Similar 

results can be obtained for other datasets. 

Table 3: Predict Value for any given 𝑡 ∈  𝑇sub𝑠 ⊂ 𝑇𝑠 Subset 

RTTs    𝒕 Predict 

315.192 0.035047654 315.192 

315.018 0.03331984 315.018 

315.976 0.077575357 315.976 

314.971 0.042367935 314.971 

… … … 

317.347 0.043111637 317.347 

315.226 0.009168.298 315.226 

Table 4: Predict Value for any given 𝑡′ ∉ 𝑇sub𝑠 ⊂ 𝑇𝑠 Subset Data  

RTTs    𝒕′ Predict 

316.43 0.0 10373.716 

315.299 0.0159951 9555.476 

314.902    0.0327875         8752.346 

316.585    0.0265648         2079.002   

… … … 

315.009    0.04792148        271.26     

314.7      4887.954        239.881 

From case 1) and 2), we found that the system accumulates errors when increasing the degree of 

Lagrange interpolation function. The polynomial function obtained via the Lagrange interpolation 

formula is not a good fit for the dataset in our research project. We look at the third case as the following. 

3) With this approach, we will find a good fit function RTT = f(t) based on all the n points of the 

dataset. Suppose there exists a polynomial function 

𝑓(𝑡) =  𝑎0 + 𝑎1𝑡 + 𝑎2𝑡
2 +⋯𝑎𝑚𝑡

𝑚                  (3) 

that fits the dataset.  

Substitute all the points of the dataset into the above polynomial function (3) and write the result in 

matrix form, we have 
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(

  
 

1 𝑡1 𝑡1
2 ⋯ 𝑡1

𝑚

1 𝑡2 𝑡2
2 ⋯ 𝑡2

𝑚

1 𝑡3 𝑡3
2 ⋯ 𝑡3

𝑚

⋮ ⋮ ⋮ … ⋮
1 𝑡𝑛 𝑡𝑛

2 ⋯ 𝑡𝑛
𝑚)

  
 

(

 
 

𝑎0
𝑎1
𝑎2
⋮
𝑎𝑚)

 
 
=

(

 
 

𝑅𝑇𝑇𝑠1
𝑅𝑇𝑇𝑠2
𝑅𝑇𝑇𝑠3
⋮

𝑅𝑇𝑇𝑠𝑛)

 
 
⇔ TA=RTT    (4) 

The fit function (3) can be determined once we get the coefficients in matrix A. It is trivial to see that 

A=(𝑇′𝑇)−1𝑇′RTT 

satisfies the above equation (4).  

With this method, instead of using all the data collected from AWS1 server, we apply different 

number of elements from the dataset, such as 3, 4, 5, …, to see if we can get the best fit.  

First, we try m = 1, and randomly pick up two elements from the dataset to compute 𝑎0, 𝑎1. We then 

obtain a RTT function (𝑡) = 𝑎0 + 𝑎1𝑡 . Similarly, we try different value for m, and get different RTT 

functions. For each function obtained, we use the predicted value to determine which RTT function is 

the best fit. For the dataset collected from AWS1 server, we found the best-fit RTT function when m = 

9. The results from Table 5 and Table 6 show that the predicted value obtained from the best-fit function 

𝑎0 + 𝑎1𝑡 + 𝑎2𝑡
2 +⋯+ 𝑎9𝑡

9 = 𝐹(𝑡) are closer to the observation than other predicts. 

Table 5: Predict Value for any given 𝑡 ∈  𝑇𝑠 Subset Data 

RTTs 𝒕 Predict 

316.43 0 315.815 

315.299  0.0159951 315.829 

314.902 0.0327875 315.841 

316.585    0.265648        315.788  

317.099    0.4176257       315.672 

314.888    0.4320359       315.662 

314.818    0.451224        315.648 

314.71     0.4672484       315.637  

Table 6: Predict Value for any given 𝑡′ ∉ 𝑇𝑠 Subset Data  

RTTs 𝒕′ Predict 

 0 315.815 

 0.0005          315.815 

 0.001           315.816 

 0.0015          315.816 

 0.002           315.817  

 0.0025          315.817 

 0.003           315.818 

 0.0035          315.818 

4 Experimental Results and Analysis 

Network Setup  

We set up a network connection chain from Columbus State University (CSU) to Amazon AWS servers. 

We ran SSH from one computer host in Cybersecurity Lab, CSU, named CCT30 with Ubuntu Linux 

installed.  We connected to the first AWS server (AWS1) from CCT30. AWS1 is located in Northern 

Virginia with IP of “34.239.127.118”. We then connected to the second AWS server (AWS2) from 

AWS1. AWS 2 is located in Frankfurt, Germany with IP of “52.59.96.142”. The connection chain was 
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further extended to the third AWS server (AWS3) from AWS2. AWS3 is located in London, UK with 

IP of “18.133.230.26”. Finally, we connected to the last AWS server (AWS4) located in Tokyo, Japan 

with IP of “54.199.163.186” from AWS 3.  

Data Collection 

Any network traffic generated at CCT30 will go through the connection chain set up in 4.1 and arrive at 

AWS4. We run TcpDump to collect network traffic at CCT30, AWS1, AWS2, and AWS3 respectively.  

To collect the data at each host, we ran a TcpDump command to filter out non-needed packets. The 

following command was ran for every host except the victim itself, as it collects the downstream packets.  

sudo tcpdump –nn –tt ‘(tcp dst port 22 && src IPlocal) || 

Tcp src port22 && dst IPlocal) &&  

ip[2:2]>52>HostID_AttackX_TestX.txt, 

where IPlocal refers to a given host's IP address; ip[2:2]>52: remove all 0 length packets used for 

establishing a connection and all ACK and SYN signal packets; ID_AttackX_TestX.txt: refers to a text 

file that can store the results from TcpDump. 

The following shows two packets captured and stored in the text file with the first one sent to the 

SSH sever, and the second one echoed from the server.   

1644853535.518797 IP 168.27.2.107.43870 > 34.239.127.118.22: Flags [P.], seq 

4291344119:4291344155, ack 2768127312, win 501, options [nop,nop,TS val 606453850 ecr 

2151956101], length 36 

1644853535.646703 IP 168.27.2.107.43870 > 34.239.127.118.22: Flags [P.], seq 36:72, ack 1, win 

501, options [nop,nop,TS val 606453978 ecr 2151986183], length 36 

For our experiments, we designed three attacking scenarios as shown in the following. For every 

“attack scenario”, we performed ten tests on a connection, and recorded the data at the four separating 

hosts. We ran the three “attacking scenarios”, and obtained a total of 120 TcpDump text files which 

store the packets captured. We use these files as our dataset to conduct FFT analysis. The ultimate goal 

is to see if we can apply results from the FFT analysis to do stepping-stone upstream detection. 

First Attacking Scenario – Attacker 1 

On SSH Session 

     pwd 

     whoami 

     sudo su 

     ls 

     cd/etc 

     ls –a 

     cp/etc/shadow/tmp/shadowCopy 

     chmod 755/tmp/shadowCopy 

 

On another Computer 

     Scp –p buntu@59.199.163.186:/tmp/shadowCopy 

                 ./Documents 

On sSH Session 

mailto:buntu@59.199.163.186:/tmp/shadowCopy
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     Rm/tmp/shadow Copy 

     Exit 

Second Attacking Scenario – Attacker 2 

On SSH Session 

     whoami 

     pwd 

     cd/home/ubuntu 

     ls 

     nano text_file.txt 

     //paste a large text file and save it 

     cat hello.txt 

     exit 

 

Third Attacking Scenario – Attacker 3 

On SSH Session 

     whoami 

     pwd 

     cd/home/ubuntu 

     ls 

     nano text_file.txt 

     //enter a few sentences and save the text file 

     cat hello.txt 

     exit 

Data Processing 

For each tcpdump “.txt” file, we made a Python program Send-Echo-Splitter.py to process it and 

generate two separate files. One is called Send packet file which records all of the timestamps for each 

Send packet. Another is called Echo packet file recording all the timestamps for each Echo packet.   

We use the data mining clustering approach published (Yang, J., 2021) in 2021 to match an Echo 

packet with its corresponding Send packet from the above two Send and Echo packets files. The matched 

pair could be utilized for computing the RTT for each corresponding Send packet. The following shows 

some matched results. In each row, the first column represents the RTT values computed, the second 

column tells us the index of the matched packet pair (Send Index, Echo Index), and the third column 

records the timestamp for each Send packet.   

331552.000000, (51,51), {1645207699408398} 

332175.000000, (52,52), {1645207699528256} 

332029.000000, (53,53), {1645207699720625} 

331973.000000, (54,56), {1645207700367961} 

331762.000000, (55,57), {1645207700495874} 

331568.000000, (56,58), {1645207700647937} 

332507.000000, (57,59), {1645207700831916} 

332528.000000, (58,60), {1645207701063912} 

The following criteria are also used to filter out the incorrect “extra” packet matches.  

1. A particular send packet can only match with one echo packet 

2. A particular echo packet can only match with one send packet 
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3. In the case of multiple uses of one send packet, the first match found, where the RTT is within a 

particular variance (10% for our tests) of the current running RTT, is kept. All other matches using 

that send packet discarded. If no match found is within that variance, then the first found match 

kept. This is considered to be an outlier match. (And almost always have a much larger or smaller 

value than the average) 

4. Whenever an echo packet found in a match, and that echo packet has already been found to be in a 

correct match, the initial match is discarded. This occurs even if it would discard all matches for a 

particular send value. 

Experimental Results 

Collected Data 

We collected all the data packets from CCT30, AWS1, AWS2, and AWS3 respectively. We will not 

show all the packets captured here, but the following are two sample packets captured at CCT30.   

Packet 1 

1644853535.863699 IP 168.27.2.107.43870 > 34.239.127.118.22: Flags [P.], seq 72:108, ack 37, win 

501, options [nop,nop,TS val 606454195 ecr 2151986499], length 36 

Packet 2 

1644853535.979056 IP 34.239.127.118.22 > 168.27.2.107.43870: Flags [P.], seq 37:73, ack 108, win 

471, options [nop,nop,TS val 2151986627 ecr 606454195], length 36 

Packet 1 is a request packet (Send) sent from CCT30 to AWS1, and Packet 2 is the response packet 

(Echo) sent from AWS1 to CCT30. Packet 2 is originally sent from AWS4.  

Processed Data 

Packet 1 and Packet 2 are a packet pair that matches with each other. From a matched packet pair, we 

can compute its corresponding RTT which can reflect the connection chain length from CCT30 to 

AWS4. We can run an algorithm for packet-matching (Yang, J., 2021) to match all the packets captured 

from CCT30, AWS1, AWS2, AWS3, respectively. The following Table 7 shows part of the matching 

results at CCT30 and AWS1. In this table, the column RTT with unit Millisecond represents the round-

trip time for match packet pairs. The column T with unit Second represents the timestamp at which each 

Send was captured. 

Table 7: Part of the Matched Data from Data Sets CCT30 and AWS1 

CCT30Attack1test2 AWS1Attack1test2 

RTT(ms)   T(s) RTT(ms)   T(s) 

333396.0    1644852311589120.0 316430.0    1644852348576518.0 

332313.0 1644852311749088.0 315299.0    1644852348736469.0 

331806.0 1644852311917076.0 314902.0    1644852348904393.0 

333567.0 1644852314245633.0 316585.0    1644852351232998.0 

334749.0 1644852315765399.0 317099.0    1644852352752775.0 

331869.0 1644852315909481.0 314888.0    1644852352896877.0 

333298.0 1644852316101481.0 314818.0    1644852353088758.0 

331649.0    1644852316261634.0 314710.0    1644852353249002.0 

332051.0    1644852316381259.0 315009.0    1644852353368666.0 
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Interpolation RTT Time Function Results 

Figure 1 shows the interpolation RTT=f(t) function for CCT30 based on the data in Table 7, where the 

Y axis contains the RTT values in millisecond, and the X axis contains time in second. The red line 

represents the observations of data set obtained from CCT30. The green line represents the predict value 

obtained from the interpolated function RTT=f(t).  

 

Figure 1: Interpolated RTT Function at CCT30 

 

Figure 2: FFT Results from the RTT Function at CCT30 

FFT Results from the Interpolated Time Function 

Figure 2 shows the FFT results from the RTT function at CCT30. The right one shows the RTT simulated 

function. Figure 3 shows the filtered FFT results at CCT30. The left figure shows the FFT results before 

filtering. The right one shows the FFT results after filtering. The reason we applied a filter to the FFT 

results is that we can examine the FFT value in details from CCT 30, AWS1, AWS2, and AWS3. We 

found the unfiltered FFT values remains the same for CCT30, AWS1, AWS2, and AWS3. We design 

the filter as the following: for any given cut-off frequency, here, we use cut_off = 5Hz, and assume that 

the FFT amplitudes are set to zero when the absolute frequencies is less than the cut-off value. The blue 

curve in the right of Figure 3 shows the relationship between the filtered FFT amplitude (where absolute 

frequencies larger than the cut-off) and frequency of data set from CCT30. 

 

Figure 3: FFT Filtered Results at CCT30 



Analyzing Distribution of Packet RTTs using FFT                                          Lixin Wang et al. 

 

148 

5 Conclusion and Future Work 

All the known network-based SSID methods used the distribution of packet RTTs to estimate a 

connection chain length. This paper proposed the FFT transformation approach to analyze the 

distribution of packet RTTs. A critical RTT time function was obtained by using FFT interpolation based 

on matched pairs of Echo and Send packets. We then applied the FFT analysis to the resulting RTT time 

function.  

As for future research direction, we will explore an appropriate filter to analyze the FFT values. We 

then apply the filtered FFT values to precisely compute a connection chain length, and thus we are 

confident that we will be able to develop new NSSID approaches that will be resistant to attackers’ 

evasion by using hacking tools such as time-jittering and/or chaff perturbation, with both false positive 

and negative errors significantly reduced, compared to all the known NSSID approaches. 
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