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Abstract  

The emergence of a new trajectory in wireless networks can be attributed to the assessment of mobile 

devices and applications in the present decade. A recently developed approach that combines energy 

harvesting with large-scale multiple antenna technology has emerged as a promising means of 

enhancing energy efficiency through the utilization of renewable energy sources and the reduction 

of transmission power per user and per antenna. Multiple Input Multiple Output (MIMO) refers to 

systems with more than one antenna element in both the transmitting and receiving sections. In the 

existing system, energy efficiency and optimal antenna selection is not achieved in MIMO system. 

Hence, in this work, Improved Butterfly Optimization (IBFO) algorithm-based antenna selection is 

proposed. Using adaptive hybrid analog-digital beamforming, this research evaluates a fifth-

generation (5G) MIMO millimeter wave (mmWave) wireless cellular beamforming system. In order 

to achieve the highest possible level of energy efficiency, finding the best transmit power, number 

of active antennas, and antenna subsets at both transmitter and receiver is the main focus. In order 

to maintain a higher data rate for wireless access, it is also employed to provide excellent Quality of 

Service (QoS). The optimization method uses sub-channel allocation, MIMO systems, and 

bandwidth allocation to offer the desired data rate for applications in real time. The proposed IBFO 
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model improves wireless power allocation schemes by using the best fitness value and optimal 

antenna elements to lower Bit Error Rate (BER), energy consumption, sum rate, throughput, and 

spectral efficiency. 

Keywords: Wireless Cellular Network, Antenna Selection, Improved Butterfly Optimization 

(IBFO) Algorithm, Sub Channel Estimation. 

1 Introduction 

Mobile services with no latency and high data rates are made possible by fifth-generation (5G) 

broadband wireless cellular networks (Nomikos, N., 2019). To support the 5G vision in this 

environment, a number of unique technologies have been introduced: mmWave (millimeter wave) 

transmission (Larsson, E.G., 2014) Architectures that use both massive multiple input multiple output 

(MIMO) and non-Orthogonal Multiple Access (NOMA). In the latter case, base stations (BSs) in cellular 

networks have several antenna arrays carefully placed. Mobile stations (MSs) that need high data rate 

services will benefit from this deployment. Making highly focused beams that eliminate multiple access 

interference facilitates this. 

It is not safe to assume that the long-term fading coefficients between a user and all of the array's 

antennas would remain constant over time because of the vast size of the antenna array that is used by 

the XL-MIMO system (Ali, A., 2019) and the many spatial non-stationarities that it has. The work on 

massive MIMO is based on the traditional idea of a massive MIMO system, which differs from the XL-

MIMO scenario. A very wide array's various areas are demonstrated in (De Carvalho, E., 2020) by 

experimental measurements to have varied propagation pathways, and in certain situations, the terminals 

may only be able to view a visibility region (VR) of the array. The non-stationarity characteristics of 

this novel situation are also discussed in terms of how they alter numerous critical design aspects. A 

MIMO antenna is seen in Fig. 1. 

 

Figure 1: Example of Wireless Mobile Network 

Generally speaking, antenna selection technology, the optimal solution involves establishing 

connections between a limited number of radio frequency circuits and high-quality antennas. On the 

assumption that the antenna's spatial range fulfils signal multiplexing criteria and is based on the chosen 

MIMO system's maximum capacity criterion, the study employs a combined transmit and receive 

antenna selection method with minimal computing complexity and great performance (Ngo, H.Q., 

2013). By continuously deleting a row and a column of the comparable decrement channel matrix, which 

removes a pair of transmitting and receiving antennas, we may apply a simplified channel capacity 

equation from the conventional capacity formula and the complete MIMO channel matrix. 
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The common method for adjusting the amplitudes and phases of the broadcast signals in classic 

Multi-User (MU) MIMO systems in order to achieve optimal beamforming is Fully Digital (FD) 

precoding. However, the FD approach would need a lot of computing and hardware resources since a 

massive MIMO configuration has the same number of radio frequency (RF) chains as antennas. It 

concentrated on suboptimal beamforming algorithms based on the Hybrid Beam Forming (HBF) 

strategy, which combines the analog RF precoder with the digital baseband precoder in a hybrid 

precoding architecture (Lavdas, S., 2021). Therefore, Low-dimensional digital precoder implementation 

requires fewer RF connections. The effectiveness of a low-complexity HBF structure in large MIMO 

mm Wave multicellular orientations is assessed in this paper. 

The main aim of this research work is optimal antenna selection in wireless cellular network. There 

are several research and methodologies introduced but the energy consumption is not achieved 

significantly. To overcome the abovementioned issues, in this research, Improved ButterFly 

Optimization (IBFO) algorithm is proposed to improve the overall network performance. The main 

contribution of this research is construction of system model, energy model, antenna selection and sub 

channel allocation. The proposed method is used to provide better results using effective algorithms for 

industrial mobile devices 

Following is how the remaining work is arranged: In Section 2, there is a short discussion of a few 

pieces of literature on antenna selection. Section 3 of the proposal provides details on the IBFO algorithm 

technique. Experimental results and performance analyses are presented in Section 4. Section 5 presents 

the results. 

2 Related Work 

In (Zhang, J., 2019), Zhang et al (2019) based on a unique hardware taxonomy, provides a complete 

view of hybrid beamforming for 5G and future mm-wave systems. We examine several approaches from 

three crucial angles using a practical approach: 1) efficiency of the hardware, i.e., the necessary hardware 

parts; 2) Efficiency of the accompanying beamforming algorithm in terms of computing; and 3) a key 

performance indicator is the achieved spectral efficiency. Promising options for hybrid beamforming in 

future wireless networks are found via systematic comparisons that show how these three design 

characteristics interact and trade off one another. 

In (Ioushua, S.S., 2019), Ioushua et al (2019) considered the part of massive MIMO communication 

known as the data phase when RF chains rather than antennas are used by the transmitter and receiver. 

We construct hybrid beam formers to decrease data inaccuracy and discuss additional relevant methods. 

In order to approximate the ideal completely digital precoder with a workable hybrid one, we provide a 

framework for the hybrid precoder. In order to optimize this matrix and the hybrid precoder alternatively, 

we make use of the completely digital precoder's limited uniqueness up to a unitary matrix. With no 

appreciable increase in complexity, Our Alt-MaG method beats current methods. We also present a new 

Alt-MaG application termed minimal gap iterative quantization (MaGiQ), which has lower complexity 

and mean squared error (MSE) than other traditional techniques for a limited number of RF chains. 

MaGiQ has also been shown in certain cases to be equivalent to the ideal totally digital solution. Utilizing 

the MSE objective's structure, we create a greedy ratio trace maximization method for combiner design 

that, in a variety of conditions, achieves low MSE. Each of our methods is compatible with a variety of 

hardware architectures. 

In (Phyo, Z.C., 2016), Phyo et al (2016) studied MIMO system downlink hybrid analog-digital 

beamforming approach. Analog, digital, and hybrid beamforming must be assessed when employing 
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uniform and non-uniform linear arrays. In order to calculate and compare the procession times for each 

scenario in this system, the base station first assumes perfect channel estimation. Binomial and Dolph-

Chebyshev arrays are used for non-uniform linear arrays to decrease sidelobes and improve the 

directivity of the array pattern, respectively. The number of radio frequency (RF) chains may be 

changed, it is possible to examine hybrid, fully digital, and totally analog beamforming. Simulation 

findings demonstrate that hybrid beamforming's performance is quite comparable to that of completely 

digital beamforming. Additionally, the hybrid scenario may be simplified while still attaining 

comparable spectral efficiency to the completely digital one, based on the program's execution duration, 

which represents the system's complexity. According to simulation data, non-uniform linear arrays 

perform much better than uniform linear arrays when used for hybrid beamforming. As a result, we may 

draw the conclusion that hybrid beamforming, which uses non-uniform linear arrays, can approach 

completely digital beamforming solutions while needing less power complexity. 

In (Hu, B.B., 2014), Hu et al (2014) suggested that MIMO has significant advantages in energy 

efficiency and spectrum efficiency, needing tens or hundreds of base station antennas supporting a far 

fewer number of terminals than conventional MIMO technology. Large antennas produce RF chains. 

Because RF chains use a lot of power and are expensive, Massive MIMO wireless communication 

systems need antenna selection on both ends. Massive MIMO wireless communication systems use a 

convex optimization-based energy-efficient antenna selection method. If the cell's channel capacity rises 

over a specific level, the number of transmit antennas, a subset of transmit antennae, and servable mobile 

terminals (MTs) are concurrently altered to improve energy efficiency. The detailed proof is given for 

the joint optimization issue. Analyses and numerical simulations are used to confirm the method. When 

compared to no antenna selection, a good performance boost in energy efficiency is attained. 

In (Eskandari, M., 2018), Eskandari et al (2018) investigated a fresh approach to energy efficiency 

(EE) maximization and power distribution difficulties in point-to-point MIMO spatial multiplexing 

systems. In contrast to conventional energy-efficient optimization strategies, which require repetitive 

numerical calculations, we present a closed-form optimal solution that illustrates how system variables 

like circuit power and channel conditions impact the ideal EE. Additionally, we specify a maximum EE 

for the fully passive transmit antenna using the closed-form function. We also use a novel antenna 

selection approach based on the obtained upper limit that, although much less complicated, provides 

almost the same efficiency as the ideal solution. 

In (Cheng, Y., 2018), Yongqiang et al (2013) investigated the non-convex properties brought on by 

it is unable to directly solve because of the discrete binary antenna selection factor, the issue of receive 

antenna selection in wireless MIMO communication systems is a problem for capacity. Integer 

programming optimization may solve this issue. To solve this problem, the Particle Swarm Optimization 

(PSO) approach links the objective function with the capability of the chosen antenna subsection 

represented by the particle, using the discrete binary antenna selection factor as the particle. PSO is a 

computationally efficient method. In order to satisfy the criteria that the number of selected antennas 

must remain constant, the particle components are free to move between [0 1], and the position of the 

top elements is used as the index of the antenna subsection to be activated. Then, by looking for the 

global optimum particle in PSO, one may discover the best antenna subset. Numerical findings 

demonstrate that the PSO approach works effectively for the benchmark function and our antenna 

selection situation. 

In (Xu, D., 2019), Cheng et al (2018) investigated the issues with joint user pairing and subchannel 

allocation (JUP-SA) in a NOMA system with multiple subchannels and many users. In order to 

maximize the minimal user diversity order, we first assess the uplink using JUP-SA. The worst-
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performing user's outage probability restricts the system's viable diversity order. After considering the 

system's downlink, a JUP-SA method optimizes the least diversity order. Then the simulation results are 

used to generate and verify a worst-case outage probability statement in closed form. According to 

numerical results, both uplink and downlink NOMA methods may achieve the same diversity order as 

the exhaustive search. 

In (Gao, H., 2021), Liu et al (2016) investigated large Spectral Efficiency (SE) and Energy Efficiency 

(EE) are the options available in MIMO systems with linear precoding and transmit antenna selection 

when taking into account circuit power consumption and large-scale fading. The EE and SE are 

optimized for transmit antennas and power; hence the EE-SE trade-off is set up as a mixed-integer-

continuous-variable multi objective optimization (MOO) problem. The obtained EE-SE relations are 

used to assess the Pareto front's EE-SE trade off characteristics. Two algorithms are created in order to 

resolve the challenging MOO problem: WS-PSO and NBI-PSO are the algorithms under consideration. 

The simulations show that both approaches may reach the Pareto optimum trade-off between energy 

efficiency (EE) and spectral efficiency (SE). Furthermore, it is observed that the NBI-PSO algorithm 

produces solutions that are more evenly distributed compared to the WS-PSO algorithm. 

3 Proposed Methodology  

In this study, wireless cellular networks are used to pick the best antenna using the Improved Butterfly 

Optimization (IBFO) method. Antenna selection, sub-channel allocation, a system model, and an energy 

model are all included in this paper. In Fig. 2, the suggested framework's general block diagram is shown. 

 

Figure 2: The Entire System is Shown in the Block Diagram 

System Model 

In this work, MIMO mmWave 5G wireless cellular orientations network is considered over a bandwidth 

of B Hz. K users have double antennae, while N users have single antennas. Co-time Co-frequency Full 

Duplex (CCFD) mode is used by the BS and users. The same radio band is used by both the BS and 

users. At the BS, Mt (Mt <M) while some Mr. antennas receive information, others send messages. By 

using various antennas, the users concurrently broadcast and receive data. The time slot indicated by the 

letter "T" in which this block of symbols is conveyed to the recipient may be characterized by the 

following system model: 

𝑌 = 𝑁 + 𝐻 ∗ 𝑋   (1) 
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The received symbol matrix, denoted as 𝑌 with dimensions 𝑟𝑥𝑡, is associated with the transmitted 

code word represented as 𝑋 with dimensions txt. The noise matrix is denoted as 𝑁, while the channel 

coefficient matrix for Rayleigh fading is denoted as 𝐻. Since all channels are Rayleigh fading channels 

and global channel state information (CSI) collection is theoretically conceivable (Rawat, D.B., 2017). 

In one time period, the CSI between two nodes is unchanged; ℎ𝐵𝑆_𝑈𝑘 ∈  𝐶1 × 𝑀𝑡 The term "CSI 

vector" refers to the channel state information vector that represents the communication link between 

the transmitting antennas of the BS and the user 𝑘 (𝑘 =  1, 2, . . . , 𝐾), the BS and consumers 

communicate using CCFD massive MIMO mm Wave 5G wireless cellular technology in the same time-

frequency domain. In order to maintain a realistic perspective, at valid nodes, we account for incomplete 

self-interference cancellation. 

Energy Model 

Every active antenna in real-world systems needs its own RF chain. The overall power consumption is 

roughly represented using the usual circuit power consumption model (Marinello, J.C., 2020), which we 

apply 𝑃𝑡𝑜𝑡 =
𝐵.𝑃𝑡

𝜂
+ 𝑁𝑡 . 𝑃𝐵𝑐 + 𝑃𝑒𝑡𝑐The first term 

𝐵.𝑃𝑡

𝜂
  the power amplifying devices' power consumption, 

and 𝜂 is the efficiency of the power amplifier. 𝑃𝐵𝑐 = 𝑃𝐷𝐴𝐶 + 𝑃𝑚𝑖𝑥 + 𝑃𝑓𝑖𝑙𝑡 The power consumption 

associated with each active antenna at the base station is indicative of the circuit's representation. 𝑃𝑒𝑡𝑐 

reflects the power consumption of the other circuit. 

Antenna Selection Via IBFO Algorithm  

Antenna selection in this study is carried out using the IBFO method. Each user is given an equal amount 

of power in order to estimate the total number of ideal antennas. Based on the assigned wattage, the user 

calculates the number of antennas. The suggested technique is utilized to choose the antenna and 

determine the broadcast power allotted. These items can increase the system's total rate and reduce power 

consumption. The nodes are chosen for antenna selection based on transmission power consumption and 

high energy efficiency values (Khalid, S., 2020). The proposed technique also significantly reduces 

feedback overhead, which is essential for attaining high capacity and low CPU time antenna selection. 

The linear procedure of the base station is shown in block diagram form in Fig. 3. 

 

Figure 3: Block Diagram of Linear Procedure of the Base Station 

The ideal amount of power allocation is calculated using the projected BER value. One method for 

estimating the generalized BER value is 

𝑔(𝜎1, 𝑝1) ≈ 𝑝 × exp {−𝑞 × 𝜎1 × 𝑝1}       (2) 

Where 𝜎1 =
1

(2𝑚−1)𝜎2 ∑ |𝑤(𝑙,𝑛)|2𝑁𝑟−1 
𝑛=0
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The modulated symbol's total number of bits is denoted by the variable Pl, while the transmit power 

of the lth antenna is represented by 𝑚. The global power cannot be derived in the domain space under 

consideration when the transmit power is distributed uniformly. Because of this, the best power 

allocation utilizing the BER expression is obtained using the suggested IBFO method. 

The fragrance emitted by a butterfly exhibits a certain level of intensity that is positively associated 

with its fitness. In other words, as a butterfly transitions between different locations, its fitness level will 

correspondingly fluctuate. Three key concepts are used to define the whole notion of detecting and 

processing the modality in the IBFO algorithm: sensory modality (𝑐), stimulus intensity (𝐼) and power 

exponent (𝑎) for best mobile node selection (Arora, S., 2019). For the selection of nodes from a wireless 

cellular network, I in the IBFO Algorithm is connected with fitness. In the IBFO Algorithm, as illustrated 

by the equation, these notions are used to construct the fragrance based on the stimulus's physical 

strength (3),  

𝑓 = 𝑐𝐼𝑎 (3) 

Where 𝑓 is the size of the scent as perceived by other butterflies, or how strong the fragrance seems 

to be, 𝑐 is the sensory modality that uses the shortest route to produce signals, 𝐼𝑛 the power exponent 

relies on modality and stimulus intensity. Thus 𝑎 & 𝑐 in the range [0, 1]. On the other hand, if 𝑎 =  0, it 

implies that the other butterflies are completely incapable of smelling the fragrance that any particular 

butterfly produces. As a result, the parameter affects how the algorithm behaves. 𝑐 is a vital parameter 

for determining the IBFO algorithm's convergence speed and is another significant parameter. To 

demonstrate search algorithms, the following butterfly attributes are idealized: 

1. Every butterfly should release a scent that will help it survive (mobile nodes) to attract each other 

(mobile nodes).  

2. The butterfly with the greatest scent will fly.  

3. The butterfly's sensory intensity depends on the objective's landscape. 

IBFO comprises three phases: Initialization, Iteration, and Final. Each time IBFO is run, the 

initialization phase is carried out first, followed by repeated searches for optimum nodes, and lastly, the 

method is ended when the best solution for optimal selection has been discovered. In the initialization 

step, the IBFO algorithm's solution space is used to calculate the shortest distance. Additionally, the 

parameters' allocated values for IBFO (Tubishat, M., 2020). In the antenna selection search space, the 

placements of butterflies (mobile nodes), together with their fragrance and fitness values, are created 

randomly. The algorithm begins iteration after start-up.  During each iteration, the butterflies within the 

solution space for antenna selection undergo movement to new positions, followed by the evaluation of 

their respective shortest distance values. First, according to the method, several locations in the solution 

space are used to determine butterfly fitness values. When this happens, these butterflies will use 

equations to produce smell where they are (4). The butterfly advances in the phase of global search in 

the direction of the best answer (g∗) (optimal nodes) which an equation may be used to depict (4),  

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + (𝑟2 × 𝑔∗ − 𝑥𝑖
𝑡) × 𝑓𝑖 ∗ 𝐸𝐶𝐸𝑊 (4) 

where 𝑥𝑖
𝑡 the resolving vector 𝑥𝑖 the iteration number for ith butterfly 𝑡. Here, 𝑔∗ identifies the current 

iteration's top-performing node solution that was determined after considering all other options. ith 

butterfly-like fragrance is shown by 𝑓𝑖 and 𝑟 ∈ [0, 1] is an arbitrary number Equation (5) may be used 

to describe the local search phase,  

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + (𝑟2 × 𝑥𝑗
𝑡 − 𝑥𝑘

𝑡 ) × 𝑓𝑖 ∗ 𝐸𝐶𝐸𝑊 (5) 

where 𝑥𝑗
𝑡 and 𝑥𝑘

𝑡  are the antenna selection solution space's jth and kth butterflies. If 𝑥𝑗
𝑡 and 𝑥𝑘

𝑡  belongs 

to the same swarm and 𝑟 ∈ [0, 1] becomes a local random walk if is a random number. For the best node 
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selection from the supplied network, butterflies may explore locally and worldwide for food and a mate. 

In IBFO, switching from a common global search to an intense local search is done using the switch 

probability p.  The iteration phase is carried out until the halting conditions are not satisfied. After 

iteration, the approach yields the best answer.  To choose the ideal number of nodes in the given 

arrangement, the IBFO algorithm's node weight is also applied in equation (5). With the supplied 

wireless cellular network, the IBFO algorithm concentrated on enhancing the routing process by utilizing 

the best antenna selection. Cross Entropy (CE) is a statistical technique for calculating the distance 

between two sample distributions, reducing this distance in an optimization problem to find the ideal 

probabilistic distribution parameters. The CE approach offers high resilience, outstanding flexibility, 

and a solid capacity to do global searches.  

𝐶𝐸 =
1

𝑁
∑ 𝐼𝑠<𝑟

𝑓(𝑥𝑖,𝑣)

𝑔(𝑥𝑖)
𝑁
𝑖=1        (6) 

where 𝑥𝑖 represents a representative sample chosen at random from 𝑓(𝑥; 𝑣) sampling density is very 

important 𝑔(𝑥). To determine the ideal significance sampling density, the distance between two sample 

distributions is calculated using the Kullback-Leibler divergence, or cross-entropy. 

Algorithm 1 depicts the general phases that make up the proposed IBFO algorithm. the number of 

nodes in the specified network (Step 1), and then the stimulus intensity, is used to construct the starting 

population in Algorithm 1. 𝐼𝑖 at 𝑥𝑖 (Step 2) depending on the sensor modality to calculate 𝑐, power 

exponent 𝑎 (Step 3). By using the quickest route, these components are produced. Then, halting 

conditions are applied (Step 4), and the fragrance value is calculated for each butterfly in the network 

(Step 6). The best node in the population is then found (Step 8), and a random number, r, is created (Step 

10). If 𝑟 < 𝑝 then use equation (5) to go in the direction of the best butterfly; else, walk randomly. Then, 

after updating a value (Step 17), assess people in light of their new positions (Step 18). Finally, use the 

end while command (Step 19) to finish the procedure. Fig. 4 depicts the suggested IBFO algorithm's 

flowchart. 

 

Figure 4: Flowchart IBFO Algorithm 
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Algorithm 1: Improved Butterfly Optimization (IBFO) Algorithm  

Input: WMN with number of mobile nodes (multiple users and antennas) 

Objective function: Higher sum rate and lower energy consumption  

Output: Best no.of antennas selection 

1. Generate initial population of 𝑛 butterflies 𝑥𝑖 = (𝑖 = 1,2, … , 𝑛) via number of mobile nodes in 

the network 

2. Stimulus Intensity 𝐼𝑖 at 𝑥𝑖  

3. The power exponent a, switch probability 𝑝, and sensor modality 𝑐.   

4. when the halting requirements are not satisfied, 

5. Do for each population of butterflies 𝑓. 

6. Calculate fragrance for 𝑓 using equation (2) and generate weight via entropy by equation (6) 

7. End for  

8.     Finding the ideal butterfly (best antenna in mobile node) 

9.    Do for each population of butterflies 𝑓. 

10.     Generate random number r 

11.       If 𝑟 < 𝑝 then  

12. Equation (4) directs you to the ideal butterfly (best mobile nodes) and generate weight via entropy 

by equation (5) 

13.        Else  

14.          Use the equation (5) to move arbitrarily 

15.        End if 

16.     End for 

17.      A value should be updated  

18.      Individuals (nodes) should be evaluated in light of their new position 

In this work, assigning and determining the chicks using the random position of the antennas in 

MIMO mmWave 5G wireless cellular orientations. The chicken with best fitness value is updated for 

improving the suitable antenna which is described in the Algorithm 1. Compute the best values for all 

users and find the best butterflies (antennas) which have global best searching food mechanism fitness 

value. The IBFO algorithm is used in the proposed system to identify antenna combinations that optimize 

transmission power while using a minimal number of chosen antennas. In order to maximize fitness, the 

IBFO the transmission power and antenna selection performance over the MIMO systems 

Sub Channel Allocation 

In this work, sub channel allocation increases the MIMO mmWave 5G wireless cellular orientations 

performance. Adaptive antenna arrays at base and mobile stations may increase QoS and system capacity 

in MIMO mm-Wave 5G wireless cellular systems. To broadcast the MIMO mm Wave block symbols, 

the highest-eigenvalue subcarriers are always used in adaptive antenna-array-based MIMO systems. For 

broadband MIMO wireless transmission systems, dynamic spatial sub-channel allocation with adaptive 

beam shaping is investigated (Tejera, P., 2006). The suggested system dynamically selects the ideal 

spatial sub-channels to transmit MIMO block symbols after choosing the eigenvectors associated with 

the relatively high spatial sub-channel eigenvalues to create the beam-forming weights at the mobile and 

base stations. The results demonstrate that the proposed system outperforms an adaptive antenna-arrays-

based MIMO mm Wave 5G wireless cellular orientation system that does not employ dynamic spatial 

sub channel allocation in the presence of multipath fading channels. The suggested method outperforms 

adaptive antenna-array-based MIMO systems in terms of channel estimate accuracy and is less 

susceptible to feedback latency in rapidly changing channels.  
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Our zero-forcing allocation technique is equal to a MIMO mmWave channel Singular Value 

Decomposition (SVD) that does not need the sequential encoding feature if all receive antennas can 

work together. Our technique is equal to a Zero-Forcing with Successive Encoding Approach (ZF-SE) 

with optimum encoding order and user option, however, if cooperation among receive antennas is not 

available. In intermediate scenarios, wherein cooperatively receive antennas are organized into groups, 

the MIMO channels associated with these groups exhibit effective diagonalization. This occurs when 

only groups of antennas are permitted to engage in cooperation with each other. Cooperative zero-

forcing with consecutive encoding and allocation is the name we give to our method because it makes 

advantage of the receive antennas' capacity for collaboration and successively allots sub channels to 

users. 

The block-ZF-SE technique incorporates two parameters that can be optimized to achieve the 

objective of maximizing the sum rate. As stated earlier, the algorithm assigns a certain number of 

subchannels to an individual user, which is determined by the rank of its projected channel matrix during 

each iteration. In the event that certain subchannels exhibit weakness, it becomes evident that the current 

situation is suboptimal. In this particular scenario, their overall impact on the aggregate rate may be 

relatively insignificant, yet they exert substantial limitations on the subchannels of users that are 

subsequently encoded. The encoding order is considered the second parameter. In the subsequent 

section, an algorithm is presented within the framework of the ZF-SE method, which aims to guide users 

in order to achieve the maximum attainable sum rate. Zero-Forcing with the Successive Encoding and 

Successive Allocation Method, or ZF-SESAM is the name of the approach used in this research. The 

sequential assignment of subchannels to specific users is the method used in this case. This algorithm's 

criteria for sub channel allocation, together with each step's assignment of only one sub channel to a 

specific user, 

To optimize the utilization of spatial processing capabilities at the transmitter and receiver, wireless 

communication systems require novel channel allocation techniques for multi-user MIMO processing 

algorithms. The task of identifying the optimal solution for a particular user group while maintaining 

cost-effectiveness in computing is a complex endeavour. This is primarily due to the additional variable 

introduced by spatial processing at the receiver, which further complicates the standard channel 

allocation problem. Subchannels in the frequency and spatial domain are given to each receiver in order 

to optimize all rates conveyed over the channel, under the assumption that the transmitter of a Gaussian 

broadcast channel holds entire channel state information. Each vector channel should be transformed 

into a collection of scalar channels, according to the recently proposed generic sum capacity maximizing 

technique. A two-step heuristic is suggested in this study. The first step computes a metric that gauges 

two users' geographic compatibility. After maximizing the total of the compatibility metrics across all 

groups, the users are divided into shared channels in the next stage. Additionally, it offers the option for 

a single user's sub-channels (from various multipath components) to not necessarily share the same time-

domain channel. These methods have a reasonable processing cost while yet being pretty near to the 

ideal answer in simulations. 

4 Simulation Result 

A concurrent execution of separate Monte Carlo (MC) simulations has been built as a 5G system-level 

simulator. With a two-tier wireless cellular orientation, MSs are evenly distributed to achieve this. 

Requests from each MS Rk Mbps (1≤ k ≤K) it may be feasible to appropriately allocate Physical 

Resource Blocks (PRBs) and determine the modulation order for each PRB based on the serving BS (5G 

NR Physical Channels and Modulation, 2018). In order to enhance overall throughput while minimizing 
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downlink transmission power and blocking probability, it is imperative to implement optimization 

strategies, adaptive beamforming and subcarrier allocation, which will be discussed in the next section, 

are used (BP) 

The existing methods are such as NOMA (Xu, D., 2019), Adaptive Hybrid Beamforming (AHB) 

(Lavdas, S., 2021) and BER, sum rate, energy use, spectrum efficiency, and throughput measures were 

used to assess the suggested IBFO algorithms. 

Bit Error Rate (BER) 

The number of error bits detected in a unit of time is known as the BER 

BER= 
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑖𝑡𝑠 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑖𝑛 𝑒𝑟𝑜𝑟

𝑡𝑜𝑡𝑎 𝑙𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑖𝑡𝑠 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑟𝑒𝑑
      (7) 

Sum Rate  

The sum rate in a network is defined as the aggregate of all communication rates occurring within the 

network. The statement is pretty self-evident: The more time your nodes can communicate, the more 

data they can transfer 

Energy Consumption 

The most critical metrics in the mmWave 5G wireless cellular orientations are Energy Efficiency (EE). 

Energy efficiency trade-offs for MIMO mm Wave uplink transmission must be calculated by balancing 

the number of base station antennas against the number of users that are actively using the network 

(Akin, O., 2022). It is possible to define the efficiency of an antenna as the ratio between the power that 

is provided to the antenna and the power that is reflected away from the antenna. A considerable amount 

of the power that was originally given to the antenna is emitted or radiated in a direction that is different 

from its input. This is the defining characteristic of an antenna that has a high level of efficiency. 

Spectral Efficiency 

The total spectral efficiency of the transmissions inside a cellular network's cell is what we often refer 

to when we use the term "spectral efficiency." In bits/seconds/Hz, it is measured. The cell throughput 

will be calculated in bits per second if you multiply it by the bandwidth. The implementation of antenna 

arrays comprising numerous active elements at base stations, coupled with the utilization of coherent 

transceiver processing, presents a promising approach for enhancing the spectral efficiency (SE) of 

cellular networks through the deployment of 5G wireless cellular orientation. 

Spectral efficiency 𝜂𝑆 = 𝐵/∆𝑣𝑐ℎ      (8) 

where 𝐵 is the single-channel bit rate and ∆𝑣𝑐ℎ is the channel spacing 

Throughput  

The throughput of a network or communication transmit is the pace at which data is successfully 

transferred through them.  

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 = 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑠𝑒𝑛𝑡 /𝑡𝑖𝑚𝑒    (9) 
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BER 

 

Figure 5: BER 

From the Fig 5, it can be observed that the comparison of BER using existing NOMA, AHB and 

proposed IBFO algorithms. In the x-axis SNR is taken and, in the y-axis, BER metric is taken. Fig 5 

shows that the existing methods provide higher BER whereas the proposed IBFO algorithm provides 

lower BER. The proposed IBFO algorithm provides the optimum transmit antenna technique in terms 

of lower BER performance. From the result, it concluded that the proposed framework improves that 

the optimal antenna selection and sub channel allocation performance rather than the existing algorithms 

Sum Rate 

 

Figure 6: Sum Rate 

From the above Fig 6, it can observe that the comparison of existing NOMA, AHB and proposed IBFO 

algorithms in terms of sum rate. In x axis we plot the SNR and in y axis the sum rate values are plotted. 

In existing scenario, the sum rate values are lower by using NOMA, AHB methods. In proposed system, 

the sum rate value is increased significantly by using the proposed IBFO algorithm. It is used to achieve 

sum rate of the uplink multiuser large-scale MIMO mmWave system for the number of antennas. The 

objective of IBFO is to identify the ideal number of RF chains that are activated in order to optimize the 

sum rate. It is imperative to employ a suitable methodology for antenna selection while simultaneously 

determining the optimal quantity of active RF chains. To achieve the maximum average sum rate while 

maintaining equal received power, the optimal number of activated RF chains is determined through 

analytical methods. With regard to the system sum rate, the least favourable set of RF chains is 

subsequently selected for activation. It enables balancing of the transmitted power and RF chain power 

consumption. Thus, the proposed IBFO shows that efficient and optimal antenna selection performance 

in MIMO mmWave system. 
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Energy Consumption 

 

Figure 7: Energy Consumption 

From the Fig 7, energy usage is compared using NOMA, AHB, and suggested IBFO algorithms. 

Distance and energy consumption are measured on the x- and y-axes, respectively. During the antenna 

selection process, consumption of energy is significantly minimized with the help of proposed IBFO 

algorithm over the MIMO mmWave systems. IBFO is used to improve the energy utilization which is 

focused to build sub channel effectively. It shows that the existing methods provide higher energy 

consumption whereas the proposed IBFO provides lower energy consumption.  

Spectral Efficiency 

  

Figure 8: Spectral Effectiveness 

The comparison of the proposed IBFO algorithm with the current NOMA, AHB, and spectral efficiency 

metrics is shown in Fig. 8. Antenna count and spectral efficiency metrics are shown on the x and y-axis, 

respectively. To find the best section of antennas, the suggested IBFO algorithm is applied. Increasing 

spectral efficiency is a very desired way to increase cell throughput. Additionally, space division 

multiple access on MIMO mm Wave systems are utilized to concurrently serve several user terminals 

in the cell using the same bandwidth, improving spectral efficiency. It shows that the existing NOMA, 

AHB methods provide lower spectral efficiency whereas the proposed IBFO provides higher spectral 

efficiency 
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Throughput  

 

Figure 9: Comparison of Throughput 

Fig 9 illustrates the comparison between the existing NOMA, AHB and proposed IBFO methods for the 

throughput metric. Nodes are counted on the x-axis, while throughput is measured on the y-axis. The 

proposed IBFO method is used to determine and select the best antennas effectively in wireless cellular 

network. This helps to accurately gather and transmit the data in different mobile node without any 

information loss. It shows that the existing IBFO methods provide lower throughput whereas the 

proposed IBFO provides higher throughput 

5 Conclusion 

In this work, proposed IBFO algorithm is proposed for optimizing the antenna selection and sub channel 

allocation over MIMO mmWave wireless cellular orientations. IBFO model is suggested in order to 

enhance the distribution of transmit power in wireless communication. A power allocation strategy based 

on antenna selection and sub-channel allocation is explored for transmission using MIMO mm Wave 

technology. In the proposed model, the transmit power determines the channel function and the 

necessary BER values. Optimal transmit power distribution and antenna choice are the main issues that 

need to be addressed. The suggested IBFO algorithm is used to resolve this issue with an appropriate 

antenna and efficient power distribution. Using the suggested IBFO technique, the improved objective 

value for the ideal transmit power is obtained. This method is tested, and it is discovered to give a better 

sum rate, throughput, lower BER, less energy use, and improved spectrum efficiency. In future work, 

can be aim to analyze the performance of the proposed framework in MIMO-IoT network. Also, hybrid 

swarm optimization can be developed for dealing with computational complexity issues prominently 
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