
109 

The Optimal Equations with Chinese Remainder Theorem for 

RSA’s Decryption Process 
 

Kritsanapong Somsuk1*, Sarutte Atsawaraungsuk2, Chanwit Suwannapong3,  

Suchart Khummanee4 and Chalida Sanemueang5 
 

1*Department of Computer and Communication Engineering, Faculty of Technology, Udon Thani 

Rajabhat University, UDRU, Udon Thani, Thailand. kritsanapong@udru.ac.th,  

Orcid: https://orcid.org/0000-0002-7264-4628 

 
2 Department of Computer Education, Udon Thani Rajabhat University,  

Udon Thani, Thailand. sarutte@udru.ac.th, Orcid: https://orcid.org/0000-0002-6853-6480 

 
3Department of Computer Engineering, Faculty of Engineering, Nakhon Phanom University, 

Thailand. schanwit@npu.ac.th, Orcid: https://orcid.org/0000-0002-7970-3088 

 
4Department of Computer Science, Faculty of Informatics, Mahasarakham University, Thailand. 

suchart.k@msu.ac.th, Orcid: https://orcid.org/0000-0002-6078-1203 

 
5Office of Academic Resources and Information Technology, Udon Thani Rajabhat University, 

UDRU, Udon Thani, Thailand. Chali.sa@udru.ac.th,  

Orcid: https://orcid.org/0009-0001-2223-6909 

 

Received: April 08, 2023; Accepted: June 02, 2023; Published: June 30, 2023 

 

Abstract 

This research was designed to provide an idea for choosing the best two equations that can be used 

to finish the RSA decryption process. In general, the four strategies suggested to accelerate this 

procedure are competitors. Chinese Remainder Theorem (CRT) is among four rivals. The remains 

are improved algorithms that have been adjusted from CRT. In truth, the primary building block of 

these algorithms is CRT, but the sub exponent of CRT is substituted with the new value. Assuming 

the modulus is obtained by multiplying two prime numbers, two modular exponentiations must be 

performed prior to combining the results. Three factors are chosen to determine the optimal 

equation: modular multiplications, modular squares, and modular inverses. In general, the proposed 

method is always the winner since the optimal equation is selected from among four methods. The 

testing findings show that the proposed technique is consistently 10-30% faster than CRT. 

Keywords: CRT, RSA, Decryption Process, Exponent. 

1 Introduction 

In the digital world, a great deal of confidential information is transmitted via the Internet because it is 

a simple and quick method for exchanging the information. However, the Internet is the unsecured 

medium via which attackers can quickly access information. Numerous approaches have been developed 

to preserve the information transmitted over the Internet channel. Cryptography (Guang, G., 1999) is 
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one of the algorithms used to protect a secret message by encrypting and decrypting data. In truth, there 

are two distinct cryptographic techniques. The first method is symmetric key cryptography. The secret 

key is chosen once and used for both encryption and decryption. When symmetric key cryptography is 

used for implementation, there are two benefits. The first one is regarding process completion time. In 

general, this strategy requires less time than the alternative method. The difficulty of intruder attempts 

is the second advantage. Specifically, AES (Christian, E., 2021) (Issam, H., 2010) and one-time pad 

(Guanglou, Z., 2015) are examples of powerful algorithms in this group. Moreover, both algorithms are 

still applicable today. The disadvantage is the difficulty in finding the hidden route for the exchange of 

the public key between senders and recipients. Asymmetric key cryptography (Diffie, W., 1976) or 

public key cryptography was introduced to address the problem with symmetric key encryption. In fact, 

two separate keys are necessary. The public key is the first key. In general, it is shared publicly with the 

entire group. The second key is the private key, which must be kept in strict confidence. In practice, the 

secret channel is unnecessary for public key cryptography. However, all algorithms in this group have 

extremely high computation costs. The utilization of public key cryptography for the protection of secret 

information is inappropriate. On the other hand, the secret key that will be used to protect the secret 

information is exchanged using public key cryptography. 

RSA (Rivest, R.L., 1978) represents one of the algorithms for public key cryptography. It is 

recognized as one of the most powerful algorithms in the digital age. RSA is based on the integer 

factorization (Gupta, S.C., 2021) (Nedal, T., 2018) issue. It will be broken upon the disclosure of all 

prime factors. Although numerous integer factoring techniques, such as (Somsuk, K., 2018) (Somsuk, 

K., 2021) (Somsuk, K., 2022) (Somsuk, K., 2020) (Pollard, J.M., 1978) (Omar, K., 2008) (Wu, M.E., 

2014), have been presented, there is no effective method to break RSA in polynomial time with at least 

1024 bits of modulus. In 1994, P. Shor (Shor, P.W., 1994) introduced the factoring method to break 

RSA, a novel concept. Shor’s algorithm is distinct from other algorithms since it is based on the quantum 

computer. In addition, he demonstrated that this method on a quantum computer will factor the large 

modulus in polynomial time. However, quantum computer development is still in progress. In fact, 

nobody can confirm when the fully quantum computer will be created. Therefore, RSA is still a robust 

technique that is extensively employed today. 

Typically, the private key has a high numerical value. Since the private key is the exponent for 

computing modular exponentiation, it has an effect on how long it takes to decipher a message. Chinese 

Remainder Theorem (CRT) (Sung, M.Y., 2003) (Atsushi, M., 2011) is the primary method for 

accelerating the RSA decryption procedure by dividing the private key into two sub keys. Before 

combining the results, two modular exponentiations with the new keys are performed. Moreover, 

modified methods were developed to accelerate this procedure. However, they are a specific algorithm 

that is appropriate in some conditions. 

In this study, the best equation for computing modular exponential with sub exponent is determined. 

In this work, the modulus is assumed to be the product of two primes. Therefore, two modular 

exponentiations with two sub exponents are necessary. For each modular exponentiation, the best 

equation is determined using one of four algorithms. Consequently, it is feasible that the equation chosen 

to compute modular exponentiation with the first sub exponent is distinct from the equation with the 

second sub exponent. Moreover, there are three parameters to consider the best equation, modular 

multiplications, modular squares and modular inverses. In addition, it means that the proposed method 

for selecting the two best equations requires the shortest computing time in the decryption process.  
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2 Related Works 

This section provides an overview of RSA and discusses strategies for accelerating RSA’s decryption 

process. 

RSA 

RSA is one of the most widely known algorithms for public key cryptography. In 1978, three scholars, 

R. Rivest, A. Shamir, and L. Adleman, created this algorithm. In addition, this method is compatible 

with both data encryption and digital signature. Although it has already been demonstrated that RSA 

can be broken rapidly using Shor’s algorithm (Shor, P.W., 1994), which was proposed by P. Shor in 

1994, Shor’s method is based on the under-development quantum circuit. Thus, RSA is still typically 

utilized today. To implement RSA for data encryption, there are three techniques. 

Process 1 (Key Generation Process): The purpose of this procedure is to generate all RSA 

implementation parameters. The five steps are as follows: 

Step 1: Generating two random prime numbers, p and q 

Step 2: Computing the modulus, n, from n = p*q  

Step 3: Computing Euler’s totient function,  (n), from  (n) = (p – 1)*(q – 1) 

Step 4: Selecting pubic key, e, from the following conditions, 1 < e <  (n) and gcd(e,  (n)) = 1 

Step 5: Computing the private key, d, from d = e-1 mod  (n) 

After finishing the Key Generation Process, all parameters are separated into two distinct groups. 

The first category consists of published parameters e and n. Both are sent to senders who wish to transmit 

a secret message to recipients (owners’ key). The second group is for the private parameters which are 

p, q, d and  (n).  

Process 2 (Encryption Process): It is the method by which senders transmit a secret message to 

receivers by encrypting the plaintext prior to transmission through an insecure channel. The equation for 

encryption is as follows: 

c = me mod n     (1) 

where m is original plaintext and c is ciphertext 

Process 3 (Decryption Process): Using this method, the recipient is able to recover the plaintext. 

The equation for decryption is as follows: 

m = cd mod n     (2) 

In practice, the disadvantage is the time required to complete the encryption and decryption 

processes. Because it is the case that all parameters are available on this side, the decryption process can 

be sped up by employing numerous improved methods. In section 2.3, these algorithms will be 

discussed. 

Fast Exponent  

In fact, modular exponentiation is required to solve both above equations. However, this procedure has 

a very high computational cost, especially due to the exponent’s high value. Fast exponent 

(Abdalhossein, R., 2015) (Chia, L.W., 2006) is the method for accelerating modular exponentiation. The 

exponent is converted to a binary value for modular multiplication computation. In fact, modular 

multiplication is necessary when a bit equals one. The other essential operation in Fast Exponent is 

modular square, which is based on the exponent’s bit length. Assigning b = len 1
i

i

i 0

b *2
−

=


where len is bits 

length of b, Algorithm 2.1 is the procedure of Fast Exponent. 
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Algorithm 2.1 Fast Exponent 

    INPUT: a, c, b0, b1, , blen-1 

    OUTPUT: d = ab mod c  

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

r  1, t  a, i  1 and x 0 

IF b0 = 1 Then 

    r  a  

EndIF 

While i < len Do 

    t  t2 mod c 

    IF bi = 1 Then 

        r  r * t mod c 

    EndIF 

    i  i + 1 

End While 

d  r 

Algorithms to Speed Up RSA’s Decryption Process 

Given that all RSA parameters are known, this section discusses the enhanced methods that speed up 

the decryption process while using RSA. 

a) Chinese Remainder Theorem (CRT): CRT is a method for accelerating RSA that divides d into two 

numbers that are both less than d. Although two modular exponentiations are necessary to complete the 

process, each equation can be solved in less time than it takes to explicitly retrieve m from equation (2). 

Given that dp and dq are two exponents derived from d, the equations (3) and (4) are chosen to determine 

dp and dq, respectively. 

dp = d mod p - 1      (3) 

dq = d mod q - 1      (4) 

In fact, they are the exponents needed to determine mp and mq, given the equations (5) and (6). 

mp = 
dp

c  mod p       (5) 

mq = 
dq

c  mod q      (6) 

Assigning yp = p-1 mod q and yq = q-1 mod p, m can be recovered by using equation (7) 

c = (mpyqq + mqypp) mod n     (7)  

Because dp and dq are very tiny compared to d, this indicates that the time required to recover m is 

minimized. 

b) The efficient method for the large private key (Somsuk, K., 2017) (Somsuk, K., 2018): It is a 

modified approach appropriate for a large private key. However, when d is small, this strategy becomes 

inefficient. Consequently, it should only be taken for implementation when d is small. Assuming dp and 

dq are large, CRT can be used to minimize calculation time on the decryption side. 

Assuming xp = p - dp and xq = q - dq are assigned, then mp and mq may be calculated using equations 

(8) and (9). 

mp = 
x -1p-1

(c )  mod p      (8) 

mq = 
x -1q-1

(c )  mod q      (9) 

In fact, mp may be determined quite rapidly when xp is little. This event will occur when dp has a 

tremendous value. The same reason why the procedure to find mq is quick when xq is small. 
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c) The efficient method when the cluster of all bits which are equal to one is large (Somsuk, K., 

2021): Before applying Algorithm 2.2 to get m, d will be converted into the difference of two integers, 

d = a - b, where a = 2len and len is the bit length of d. Assuming f = flen-1flen-2 f2f1f0 is computed from 

the relation between a and b, see in (Somsuk, K., 2021), the process to recover m is shown in Algorithm 

2.2: 

Algorithm 2.2 The Improved Fast Exponent 

    INPUT: n, c, f = flen-1flen-2 f1f0 

    OUTPUT: m = cd mod n  

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

l  Length of f, t  c, ma  1, mb  t, i  1 

While i <= len - 1 Do 

    t  t2 mod n 

    IF fi = 1 Then 

        ma  ma * t mod n 

    Else IF fi = 2 Then 

        mb  mb * t mod n 

    EndIF 

    i  i + 1 

End While 

r  (mb)
-1 mod n 

m  ma * r mod n 

Moreover, this approach is highly effective when the number of clusters is limited. In fact, each 

cluster is comprised of neighboring bits 0 that are grouped together. Additionally, this approach may be 

utilized with CRT to reduce computing time. Assigning lenp is bits length of dp, lenq is bits length of dq, 

dp = ap – bp and dq = aq – bq where ap = 
lenp

2 and aq = 
lenq

2 ,  then mp and mq can be computed by using the 

equation (10) and (11) respectively. 

mp = 
-1a bp p

c *(c )  mod p      (10) 

mq = 
1a bq q

c *(c )
−

 mod q      (11) 

When the number of clusters is minimal, the equation (10) can compute mp extremely quickly. In 

addition, mq is quickly determined using equation (11) when the number of clusters is minimal. 

d) The efficient method by using the new private key with low Hamming Weight (Somsuk, K., 2022): 

The private key is often allocated a big value to prevent quick attacks by attackers. In addition, there is 

a significant probability that the huge private key will have a High Hamming Weight, which is the 

amount of bits that equal 1. The number of modular multiplications is determined by Hamming Weight. 

The purpose of the procedure in (Somsuk, K., 2022) is to offer a new private key that is mathematically 

distinct from the standard private key, and which may have a lower Hamming Weight. Therefore, the 

computation time is reduced if a new key with a low Hamming Weight is constructed. In addition, if a 

new private key with a low Hamming Weight is generated, this technique can be used with CRT to 

accelerate the RSA decryption procedure (Kim, H., 2013). 

Assigning dlp = dp + a*(p – 1) and dlq = dq + b*(q – 1) where a, b  ∈ ℤ+, then mp and mq can be 

computed by using the equation (12) and (13) respectively. 

mp = 
dlp

c  mod p      (12) 

mq = 
dlq

c  mod q      (13) 

Assume that the bit length of dlp is extremely near to dp and dlp’s Hamming Weight is less than dp, 

the cost of computing modular multiplication using equation (12) is reduced. Moreover, analyzing the 

cost with the equation (13) is equivalent to considering the equation (12). 
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3 The Proposed Method 

The purpose of this research is to offer a method that considers the best equations for computing both 

mp and mq to speed up the decryption procedure. The algorithm is separated into two sections. The first 

step is to select the best equation to compute mp; the competitors are Equation (5), Equation (8), Equation 

(10) and Equation (12). In addition, the competitors for the second part to find the winner to compute 

mq are the equation (6), the equation (9), the equation (11) and the equation (13). In fact, after the winners 

for the first and second parts have been determined, both of them are selected to complete RSA’s 

decryption procedure, which indicates that these equations save the most on computation costs. 

Given that the costs to complete modular exponentiation are modular squares, modular 

multiplications, and modular inverses, Algorithm 3.1 and Algorithm 3.2 demonstrate how to choose the 

best equations to compute mp and mq, respectively. 

Algorithm 3.1 The best equation to find mp 

    INPUT: n, c, p, q, dp, xp, ap, bp and dlp 

    OUTPUT: the equation to compute mp  

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

Cp_1  Costs to compute mp by using the equation (5) 

Cp_2  Costs to compute mp by using the equation (8) 

Cp_3  Costs to compute mp by using the equation (10) 

Cp_4  Costs to compute mp by using the equation (12) 

C  1 

IF C < Cp_1 

    C  Cp_1 

IF C < Cp_2 

    C  Cp_2 

IF C < Cp_3 

    C  Cp_3 

IF C < Cp_4 

    C  Cp_4 

The Equation to Find mp is based on C 

After completing Algorithm 3.1, the selected equation to compute mp is the optimal approach. 

In addition, Algorithm 3.2 is selected for the computation of mq. 

Algorithm 3.2 The best equation to find mq 

    INPUT: n, c, p, q, dq, xq, aq, bq and dlq 

    OUTPUT: the equation to compute mp  

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

Cq_1  Costs to compute mq by using the equation (6) 

Cq_2  Costs to compute mq by using the equation (9) 

Cq_3  Costs to compute mq by using the equation (11) 

Cq_4  Costs to compute mq by using the equation (13) 

D  1 

IF D < Cq_1 

    D  Cq_1 

IF D < Cq_2 

    D  Cq_2 

IF D < Cq_3 

    D  Cq_3 

IF D < Cq_4 

    D  Cq_4 

The Equation to Find mq is based on D 
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After completing the procedure, the most efficient equation to compute mq is chosen. Therefore, it 

suggests that the time required to complete the work on the decryption side has decreased. 

Assigning M is number of modular multiplications 

S is number of modular squares 

I is number of modular inverses 

Example 1 and Example 2 demonstrate that when the best equations for computing mp and mq are 

revealed, the cost of calculation is lowered. 

Example 1 Assigning p =215893, q = 191027, n = 41241392111,  (n) = 41240985192, e = 

31287190865 and d = 18643694825, find the best equations to compute mp and mq 

Sol: First, the equations to compute mp are consider 

1.1 Choosing the equation (5), dp = 125273 = 111101001010110012, then all costs to compute mp are 

9M and 16S 

1.2 Choosing the equation (8), xp - 1 = 90619 = 101100001111110112, then all costs to compute mp are 

10M 16S and 1I 

1.3 Choosing the equation (10), fp = 100021201212102012, then all costs to compute mp are 11M 17S 

and 1I, using Algorithm 2.2  

1.4 Choosing the equation (12), the new private key which is the best exponent is, dlp = 557057 = 

100010000000000000012 with a = 2, then all costs to compute mp are 2M and 19S   

Table 1: Computation Costs to Compute mp for Example 1 

Equation to find mp Computation Costs Total 

M S I 

Equation (5) 9 16 - 25 

Equation (8) 10 16 1 27 

Equation (10) 11 17 1 29 

Equation (12) 2 19 - 21 

Table 1 displays the costs for each equation used in Example 1 to calculate mp. It suggests that the 

equation (12) with dlp as the exponent is the best equation for calculating mp.  

The following step is to consider the best equation to compute mq. 

2.1 Choosing the equation (6), dq = 130303 = 1111100111111112, then all costs to compute mq are 14M 

and 16S 

2.2 Choosing the equation (9), xq – 1 = 60723 = 100001100000011012, then all costs to compute mq 

are 9M 15S and 1I 

2.3 Choosing the equation (11), fq = 100000020100000002, then all costs to compute mq are 3M 17S 

and 1I, using Algorithm 2.2  

2.4 Choosing the equation (13), the new private key which is the best exponent is, dlq = 321329 = 

10011100111001100012 with b = 1, then all costs to compute mq are 9M and 18S   

Table 2: Computation Costs to Compute mq for Example 1 

Equation to find mq Computation Costs Total 

M S I 

Equation (6) 14 16 - 30 

Equation (9) 9 15 1 25 

Equation (11) 3 17 1 21 

Equation (13) 9 18 - 27 
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Table 2 displays the costs for each equation used to determine mq in Example 1. It indicates that 

equation (11) with fq as the exponent is the best equation for computing mq. 

Consequently, the decryption procedure takes just 5M, 36S, and 1I if the proposed method is used to 

select the best equations for mp and mq. However, 23M and 32S are required when CRT is used.  

In addition, the following example illustrates the calculation time required by each strategy to 

complete the RSA decryption process with a modulus length of 1024 bits. 

Example 2 Assigning  

p = 

6835952817751931056288719508748250083888114156174801897722150005506243706772022163

365243232703720260935001921945296648121874531453669789752082619669530561,  

q = 

8282951339977371559557116862936904963731156092285127429793792505171552713870940944

769284423758721851632533334123609971098438483697490486995960015535271683,  

n = 

5662186455182044617906740594633781463793059283654028550826283333830870632788608396

1808895635420415159791204480512204616368922595132360925475875917037696182748869934

5854084178933948099880131041351193344938955604891413475324742713753346690309076671

03717989042746914486625711825006310437901015162076942206404163,  

 (n) = 

5662186455182044617906740594633781463793059283654028550826283333830870632788608396

1808895635420415159791204480512204616368922595132360925475875917037696167629965776

8561058020475584383028580565158490860339662329731988368546778507323715608963800106

41275876475211658417719092604693295286740738414034307001601920,  

e = 

1327736579018352958045134474888367291083082145048327158995115515139773807483097603

2637033988947012540711803646999696972630925170489558220153151547718188397414403643

9175315923192600321302183208370868131320630919246598973076878530168184759211069909

4711731903451417230277697847915191478172533562155218914048449 and  

d = 

1842184205992115214210473082324629961272904739257012898984490107133717161910923963

4160790541776065994676073483482706709256343672940973616349646825006881589903758186

6249183790361515690932723867605503207740396301601165063255853765574262832221276052

16769126310742318158415501664530000915032528664645672079759809, find the best equations to 

compute mp and mq 

Sol: First, the equations to compute mp are consider 

1.1 Choosing the equation (5), dp is the exponent, then all costs to compute mp are 255M and 510S 

1.2 Choosing the equation (8), xp – 1 is the exponent, then all costs to compute mp are 260M 506S and 

1I 

1.3 Choosing the equation (10), fp is the parameter for Algorithm 2.2, then all costs to compute mp are 

255M 511S and 1I, using Algorithm 2.2  

1.4 Choosing the equation (12), dlp with a = 1 is t the best exponent, then all costs to compute mp are 

6M and 512S   
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Table 3: Computation Costs to Compute mp for Example 2 

Equation to find mp Computation Costs Total 

M S I 

Equation (5) 255 510 - 765 

Equation (8) 260 506 1 767 

Equation (10) 255 511 1 767 

Equation (12) 6 512 - 518 

Table 3 displays the costs associated with each equation used in Example 2 to determine mp. It 

suggests that the equation (12) with dlp as the exponent is the best equation for calculating mp and that 

just 518 expenses are necessary. 

The next process is to consider the best equation to compute mq 

2.1 Choosing the equation (6), dq is the exponent, then all costs to compute mq are 278M and 509S 

2.2 Choosing the equation (9), xq – 1 is the exponent, then all costs to compute mq are 255M 510S and 

1I 

2.3 Choosing the equation (11), fq is the parameter for Algorithm 2.2, then all costs to compute mq are 

15M 510S and 1I, using Algorithm 2.2  

2.4 Choosing the equation (13), dlq with b = 2 is the best exponent, then all costs to compute mq are 

251M and 512S   

Table 4: Computation Costs to Compute mq for Example 2 

Equation to find mq Computation Costs Total 

M S I 

Equation (6) 248 509 - 757 

Equation (9) 255 510 1 766 

Equation (11) 15 510 1 525 

Equation (13) 251 512 - 763 

Table 4 contains the costs for each equation used to determine mq in Example 2. It indicates that 

equation (11) with fq as the exponent is the best equation for computing mq. 

Hence, the decryption procedure takes just 21M, 1022S, and 1I if the proposed method is used to 

select the best equations for mp and mq. However, 503M and 1019S are required when CRT is used. 

4 Experimental Results 

Table 5: Time to Finish Decryption Process in Example 2 

Algorithm Time 

(mSec) 

CRT 38.47 

Applying CRT with the Method in (Somsuk, K., 2017) 39.15 

Applying CRT with the Method in (Somsuk, K., 2018) 29.87 

Applying CRT with the Method in (Somsuk, K., 2021) 30.15 

The Proposed Method 21.21 

In this section, the computation time required by each technique to complete RSA decryption process is 

shown. CRT is performed to all comparison techniques to determine the best time. Fast Exponent is also 

provided for computing modular exponentiation. In fact, the Improved Fast Exponent, Algorithm 2.2, is 

the only way in (Somsuk, K., 2018) that Fast Exponent cannot include to complete modular 

exponentiation. Furthermore, the BigInteger class in Java, which can represent an unbounded size 

variable, is selected for the implementation. All experiments were conducted on a 2.53 GHz Intel® Core 

i5 with 8 GB of RAM so that the same parameters could be controlled. 
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The experiment consists of two distinct parts. Consider the computation time required to compute 

the RSA decryption process in Example 2. The second experiment involves randomly generating all 

RSA parameters with bit lengths between 1024 and 4098 and evaluating the time required to do the same 

task. 

Table 5 compares the time to complete modular exponentiation based on the parameters in Example 

2. The experimental findings demonstrate that the proposed method imposes the least amount of 

computation costs. Because the most effective equations for computing mp and mq are chosen, the 

proposed method becomes the most effective algorithm. In practice, the equation used to calculate mp 

may differ from the equation used to determine mq. 

 

Figure 1: Time to finish Decryption Process with The Private Key 

In figure 1, a comparison of the time required to complete the decryption process is presented. In 

fact, the computation time for each bit length is determined by the mean of 20 modulus values. These 

experimental findings demonstrate that the proposed method is the most efficient. In general, CRT, 

Applying CRT with the Method in (Somsuk, K., 2017), Applying CRT with the Method in (Somsuk, K., 

2018), and Applying CRT with the Method in (Somsuk, K., 2021) are utilized to get the best equation. 

Therefore, it implies that the proposed method is always the winner. In addition, the proposed method 

completes the procedure 10 to 30 percent faster than CRT on average. 

5 Conclusion 

The private key is analyzed to select the best equations to find mp and mq before using Chinese 

Remainder Theorem (CRT) to recover m. In fact, three parameters are chosen to consider the best 

equations, modular multiplications, modular squares, and modular inverses. In addition, it implies that 

computation time to decrypt the ciphertext is certainly the lowest in comparison to the other techniques. 

The experimental result shows that the time is reduced about 10 to 30 percent when proposed method is 

compared with CRT. 
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