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Abstract 

Considering the current era of mobile Internet, the prevalence of user access, such as accessing 

multimedia via high-speed Internet and, in particular, video contents, such as those from YouTube 

and Netflix, has become the norm. However, drastically increased video access can lead to several 

issues, e.g., long delays and low throughput, unless efficient Internet traffic management schemes 

are applied. One promising approach is based on caching efficacy built into the proxy server or 

content delivery networks. Several traditional caching policies derived from classic CPU caching 

are available; various policies provide simplicity gains but at a cost of low precision. Advances in 

storage technologies and CPU speedup have drawn attention to the latter aspect. This research thus 

focuses on a two-level caching scheme. The first level combines two classic caching models, Least 

Frequency Used (LFU) and Least Recently Used (LRU), to enhance the hit rate (HR) and byte hit 

rate (BHR) for real-time or (fast) online communication with small cache size constraints. Fuzzy 

logic (FL) is applied to derive a proper weight for this hybrid model. A Support Vector Machine 

(SVM) is also used for the second level to mainly focus on improving the replacement precision 

with more knowledge given the larger cache size. Some key features are selected, geographical 

distance and similarity hashing in particular; in addition, a proper period of training knowledge is 

selected for the SVM based on human behavior. The proposed scheme is evaluated and compared 

to two well-known caching schemes, LRU and LFU, in addition to other state-of-the-art intelligent 

hybrid caching models, e.g., SVM-LRU and SVM-LFU, using a well-known dataset from IRCache. 

The comparison is performed in terms of performance gain; the proposal has the highest HRs and 

BHRs, i.e., higher HRs and BHRs than LRU, LFU, SVM-LRU, and SVM-LFU. 

Keywords: Fuzzy Logic, Least Frequency Used, Least Recently Used, Hybrid Model, Cache 

Replacement, Soft Computing, Support Vector Machine, Video Caching. 
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1 Introduction 

Internet technology, a means of communication in human society, can be considered as one of the key 

factors affecting our daily life, alongside food, clothing, medicine, and shelter. Based on a report 

provided by the ITU, from 2005 to 2022, more than 5 billion users have become involved in the Internet 

community (ITU Measuring, 2022). This rapid increase has led to an increase in Internet traffic demand 

to 1,200 Terabit per second (ITU International, 2022); in particular, video traffic is one of the most 

bandwidth-intensive applications due to its unique characteristics: huge file sizes compared to the other 

formats, such as text, image, and audio (Ramadan, E., 2021).  

Based on statistics from Cisco Systems, in 2022 (Cisco System, 2022), video content traffic over the 

Internet has represented more than 300 Exabytes per Month, representing almost 82 percent of all IP 

traffic. Nielsen Co. LTD. (Nielsen Video on Demand, 2019) has approximated the ratio of video usage 

- up to 67% due to the growth in video on-demand (VoD). Ofcom has also found that 58% of the UK 

population accesses video over the Internet (Of com the communications market, 2016).  

Many types of video access modes are available, e.g., broadcasting and multicasting; however, VoD, 

such as that from YouTube, Netflix, and Amazon Prime Video, is commonly used by Internet users 

(Raghavendra, R., 2010). VoD is typically unicast; in other words, users or subscribers can select and 

watch video content based on their desires. Generally, VoD can be accessed from various devices and 

services, such as on a website, set-top box, mobile phone, or gaming console, normally using Internet 

Protocol Television (IPTV) technology. The Subscription VoD provider (SVoD) uses a client/server 

network architecture model; here, the SVoD can control the amount of data transferred and the rights of 

each user to access a particular video (Podlipnig, S., 2003). 

To provide effective video transmission to achieve high quality of service, there are two factors that 

represent key considerations (Mittal, S., 2016). First, the efficiency of data transmission (bandwidth) is 

important because the bandwidth increases proportional to the number of concurrent subscribers in a 

time interval, in addition to coding schemes providing various bitrates. Second, the timing delay suffered 

when transferring the video from the VoD server to the destination is important in providing the best 

user experience, in addition to delay jitter, to ensure user satisfaction. The delay is typically caused by 

several factors, including distance, transmission protocols, and routing paths. 

Although SVoDs have sought ways to increase the bandwidth to meet the growth in concurrent 

subscribers and most likely reduce their waiting times, the current Internet infrastructure may not be 

able to keep pace with this rapid growth, most likely due to the costs/benefits and standards, including 

various regulations (Ali, W., 2011). Thus, both academia and industry have attempted to determine ways 

of mitigating this concern. One promising approach considers the implementation of video caching or 

proxy, typically built up on a web proxy.  

The key concept underlying caching/proxy is similar to that of a traditional caching scheme in 

hierarchical CPU memory, including CPU caches, RAM, and hard disks (Jang, H., 2014). The inter-

memory levels are positioned such that the time required to access data given the speed and distance is 

reduced. The efficacy of this structure can also be increased via accessible data repetition based on user 

behavior. This perspective is also applied to cache web objects (in addition to video contents) to reduce 

the access time for long-distance Internet communication, including bandwidth optimization with 

repetitive access patterns.  

In general, a traditional caching replacement policy (TCRP) simply applies a single factor to 

determine the object for replacement, e.g., frequency, time of arrival, or size, with a key advantage being 
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its response time due to its low complexity, which in turn makes TCRPs suitable for real-time/online 

communications (Ali, W., 2011). However, this simplified model also comes with a trade-off: 

replacement precision. This will most likely lead to un-optimized caching storage usage and thus a high 

cost of hardware storage. 

Soft Computing (SC), with its key advantages of high precision with comparable computational 

complexity trade-offs to heuristic approaches, has recently been proposed to resolve the problem of 

uncertainty in addition to non-linear solvers generally used in science and engineering domains 

(Bhaumik, H., 2016) (Wang, C., 2016) (Baskaran, K.R., 2016) (So-In, C.,2016), such as clustering and 

classification, including caching replacement (Sathiyamoorthi, V., 2014) (Albana, A.A., 2015) 

(Aimtongkham, P., 2016). Several classes of SC, including Neural Networks (NNs); Fuzzy Logic (FL); 

Evolutionary Computation (EC), e.g., Genetic Algorithms (GAs); and Support Vector Machines 

(SVMs), can be applied to a particular problem based on the problem characteristics.  

Among these classes, one promising approach is SVMs applied to both classification and clustering 

based on their key advantage of fast training and high precision (Kjernsmo, K., 2015). FL is also 

generally used in uncertainty scenarios based on constructed rules. Thus, this research seeks the 

possibility of combining TCRP and SC as a two-level caching scheme for VoD. FL was first used to 

determine a proper weight as a selection criterion between Least Frequency Used (LFU) and Least 

Recently Used (LRU) for fast caching (online) but with a small cache size (Andjarwirawan, J., 2015). 

To improve the replacement precision with more knowledge, SVM was then applied with a larger cache, 

including proper feature selections, i.e., geographical distance and hashing, to determine object 

similarity; these schemes are called Hybrid FL LRU/LFU and SVM Caching Schemes (HF-SVM). 

The remainder of this article is organized as follows. Section 2 provides a brief survey of caching 

schemes, in particular, applications in the video caching domain as well as the integration of SC 

techniques. Then, in section 3, the detailed technique of our proposal, HF-SVM, is explained. To confirm 

our performance and practicality, section 4 reports on and discusses the comparative performance of 

HF-SVM against other techniques, including traditional caching schemes, i.e., LRU and LFU, and their 

hybrids with SVMs. Finally, section 5 presents our conclusions and possible future work. 

2 Related Work 

For years, the problem of caching was addressed for data transfer between CPU and memory. The task 

of caching consists of buffering the data for repetitive access to reduce the access time but considering 

the limitations of the cache size (high cost). Several well-known TCRPs are available, such as LRU, 

LFU, First in First Out (FIFO), and Size, corresponding to ageing, access frequency, time of arrival, and 

object size (Mittal, S., 2016).  

During the internet era, the caching concept (CPU-memory) was also adopted for Internet users to 

reduce Internet congestion, typically built in web caching/proxies such as Squid and Varnish; some 

techniques included the use of LRU and LFU (Andjarwirawan, J., 2015). Considering TCRP limitations, 

i.e., low replacement precision, SC has one again been proposed to address this constraint. For example, 

in 2008, J. Cobb and H. ElAarag (Cobb, J., 2008) applied a NN for web caching based on a CPU caching 

scheme. This algorithm selected several caching parameters, such as URL, frequency, object size, and 

time stamp, in the training stage, resulting in a high replacement accuracy but at the cost of a very high 

computational time complexity.  
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In addition, M.C. Calzarossa and G. Valli proposed another SC, i.e., FL for web caching (Calzarossa, 

M.C., 2003). The key advantage of FL is that there is no requirement on training and uncertainty support 

for determining a particular weight for various variables. Fuzzy Mamdani was used, given parameters, 

i.e., frequency, access time, and object size, to create sixteen fuzzy rules. A triangular membership 

function was selected as the decision function. Note that FL can boost the replacement precision, 

especially for small caches but not for all situations, i.e., large cache sizes. 

One of the SC techniques, EC, has also been evaluated as a cache replacement scheme. For example, 

A. Vakali applied a GA to determine the density of web objects, including the retrieval rate (the product 

of latency and bandwidth) and then used the density to construct the replacement rules (Vakali, A., 

2002). The evaluation demonstrated a higher hit rate (HR) and a higher byte hit rate (BHR) compared 

to LRU; however, due to its random nature, the precision result was not certain.  

Considering another SC technique, on the other hand, SVMs were originally used for classification; 

such a technique cannot be properly used as a direct caching replacement. However, in 2016, P. 

Aimtongkham et al. integrated an SVM into LFU. After training, whether new objects are to be cached 

is determined based on the given SVM training models; if the objects are to be cached, LFU will be 

applied to perform the actual placement. Based on the evaluation, this model improved the HR and BHR 

compared with traditional LFU and LRU (Aimtongkham, P., 2016).  

All previous approaches considered only a single cache, which most likely produces the main 

drawback on caching operation intervention. Thus, some concepts of two-level caching have been 

introduced. For example, W. Ali and S. M. Shamsuddin proposed online and offline caching schemes 

(Ali, W., 2009). LRU was used as the former type of scheme to achieve a fast replacement scheme; in 

contrast, for the latter type of scheme, an Artificial Neuro-Fuzzy System (ANFIS) was applied due to its 

key advantage of its high replacement accuracy.  

Additionally, the same set the authors in (Ali, W., 2012) enhanced the ANFIS with an SVM for cache 

replacement to improve the caching precision with comparatively fast training. The Radial Basis 

Function (RBF) was selected as the kernel function. Five main object types were used for training: 

ageing, frequency, time stamp, object size, and object type. The experimental results showed that the 

SVM with LRU (SVM-LRU) can improve the precision of caching replacement compared with LRU 

and LFU. 

In addition to LRU, an SVM has also been hybridized with LFU (SVM-LFU); for example, V. 

Sathiyamoorthi and P. Ramya instead considered LFU using four features: recency or ageing, frequency, 

object size, and duration (time to acquire object from the original server) (Sathiyamoorthi, V., 2014). 

The evaluation was only on one dataset from IRCache, with 70% of the dataset used for training and 

30% used for testing, and the results demonstrated a superior performance over LFU. 

Specifically considering VoD, few proposals for optimized video caching have been presented. For 

example, in 2016, H. Zhao et al. evaluated various TCRPs, including LFU, LRU, and FIFO, for video 

objects and reported that, although LFU outperformed LRU for small cache sizes, in general, there is no 

significant difference in terms of the HR as the key metric without consideration of the BHR (Zhao, H., 

2016).  

TCRPs have also been used as a hybrid model for video caching. For example, F. Olmos et al. 

proposed a dynamic model to cluster video files given the video content using Che approximation with 

LRU (Olmos, F., 2014). Different classes of video, such as movies and news, are provided with different 
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weights for caching storage. The experimental results showed that this scheme can increase the HR to 

11% on average.  

Based on the key characteristics of human nature in terms of accessing video content, J. Chakareski 

applied graph theory concepts based on community-driven access patterns for social media video. The 

primary purpose of that research was to reduce the external bandwidth without considering the HR or 

the BHR (Chakareski, J., 2014). Similarly, M. Claeys et al. investigated messaging client behavior for 

VoD sessions (Claeys, M., 2016). The results of the analysis demonstrated caching improvements of 

over 20% for the HR but did not consider the BHR.  

Note that, from the above discussion, only a few studies have focused on video caching 

improvements, some of which only considering user behavior (Chakareski, J., 2014) (Claeys, M., 2016). 

Their focuses were mostly on the HR and not the BHR, which impacts the caching performance in terms 

of storage cost. Some researchers have only investigated TCRPs (Zhao, H., 2016), which again are fast 

but suffer from the key limitation on the caching precision. 

3 Hybrid VoD Caching Schemes using Fuzzy Logic LFU and LRU with 

Support Vector Machine (HF-SVM) 

TCRP is appropriate for fast response, and SC is appropriate for high replacement precision; thus, a 

hybrid mode will be described in this section. Fig. 1 shows that there are two caching levels: Fuzzy 

TCRP and Optimized SVM. In general, users/subscribers make a video object request from the Internet 

to the TCRP Cache Engine. This engine will evaluate the request in the 1st-level cache - if found, the 

content is returned to the users; otherwise, the request is fired back to the 2nd-level cache (via the SVM 

Cache Engine). Here, if the content is found, the content is returned back to the users; in addition, the 

1st-level cache is updated. 

In contrast, if there is a cache miss, the TCRP Cache Engine will request the video object from the 

source (VoD servers) and then, in addition to forwarding back to the users, will update the 1st-level 

cache if there is some free space remaining. However, if the cache is full, the fuzzy logic component 

will be fired to determine an appropriate weight to select the replacement policy between LFU and LRU 

(Fuzzy Cache LFU/LRU); then, the object is replaced in the 1st-level cache. In addition, the replaced 

object will be forwarded to the 2nd-level cache to update the larger caching storage. SVM Cache 

Replacement will determine if this object should be cached (SVM Cache Management) based on 

historical information.  

 

Figure 1: System Overview of the Two-level Intelligent Web Caching Schemes 
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3.1. First-Level Caching 

There are three main components in this level: the TCRP Cache Engine, the TCRP Cache Management, 

and the Fuzzy Cache TCRP (LFU/LRU). 

TCRP Cache Engine: This component is primarily used to interact with the subscribers 

(request/response). This engine will retrieve the video object from the 1st-level caching storage (TCRP 

Cache Management) and forward it to the users if hit (Cache Hit). In the case of a miss (Cache Miss), 

this engine will also forward the request to the 2nd-level cache via the SVM Cache Engine. If hit, the 

retrieved video object will be sent back to the engine to update the 1st-level cache (cache 

synchronization) (via TCRP Cache Management) in addition to the object being forwarded to the users. 

In the case of a cache miss (for both cache levels), this engine will perform the actual object retrieval 

from the Internet, i.e., from the VoD servers; forward the fresh video object back to the users; and update 

the 1st-level cache (via TCRP Cache Management). 

TCRP Cache Management: This component functions as both caching storage (store the object if 

there is free space) and management with the actual replacement operation. Again, the module returns 

the actual video object to the previous component if hit. This module also keeps track of the frequency 

and ageing for the LFU and LRU replacement policies (interacting with the Fuzzy Cache TCRP to make 

the final replacement decision). In addition, this management will forward the replaced object to the 2nd-

level cache via SVM Cache Replacement.  

Fuzzy Cache TCRP (LFU/LRU): In case there is no free space remaining in the caching storage (1st 

level), this module is used to determine the actual caching replacement policy resulting in either LFU or 

LRU based on the fuzzy system criterion (discussed in detail later). 

3.1.1. LFU and LRU Caching 

Although there are several classic caching schemes, this research only considers four well-known 

caching policies: FIFO, SIZE, LRU, and LFU. Other approaches are also applicable; however, these 

approaches are the simplest, have the lowest computational complexity, and are suitable for real-time or 

online communications (Kjernsmo, K., 2015). FIFO was one of the first simplified caching policies and 

uses an arrival time as a criterion to replace new objects. Given other considerations, especially different 

file type characteristics, SIZE is also an important replacement scheme based on the object size for 

allocating space for new objects, e.g., replacing objects with the largest or smallest file size. 

Considering user behaviors, LRU and LFU are both promising techniques for the repetition of access 

patterns. LRU considers the time to access a particular object in the final replacement decision. In other 

words, recent objects will be frequently used. For the other aspect, LFU assumes that a larger number 

of accessible objects means a higher probability of being cached. In other words, low-frequency objects 

will be selected for the final replacement. 

Our inspiration for choosing LRU or LFU is based on our intensive evaluation of video caching, as 

in the examples shown in Figure 2. Note that the trace (access pattern) was retrieved from a well-known 

dataset, NLANR (Boulder, CO, USA - BO2), with a 30-day duration. These figures show the HR and 

BHR for four different policies while varying the cache size, i.e., from 32 to 4096 MB. The results show 

that LRU outperforms the other criteria, especially with large cache sizes in terms of the HR, with the 

performances being in the order of LFU, Size, and FIFO. However, the performance of LFU is best in 

terms of high precision based on the BHR, where the performance is in the order of LRU, Size, and 

FIFO. 
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(a) % Hit Rate (b) % Byte Hit Rate 

Figure 2: Video Caching Performance Using BO2 Dataset 

3.1.2. Fuzzy LFU and LRU Caching 

A Fuzzy Logic System (FLS) is an SC technique that provides the logical reasoning when there is an 

approximation as opposed to an exact solution. Normally, the minimum and maximum are defined as 0 

and 1; however, the actual value will fall in between with some amount of fuzziness. There are four 

main stages corresponding to FL Mamdani as follows (Sabeghi, M., 2006). Note that another set of 

evaluations was also performed using FL Sugeno, but a lower performance was found.  

Fuzzifier: This step is used to transform the input data (here, the video object characteristics), i.e., 

frequency (object access rate), duration (latency required to access the video object from the VoD 

server), and size (actual video object size). This operation will normalize these features into numerical 

formats and then map to the defined membership functions to determine the crossing points of each 

function (corresponding to fuzzy rules). In this research, a triangular function was selected in addition 

to other functions, e.g., Gaussian, trapezoidal, generalized bell, and sigmoid functions (Bartere, M.M., 

2012), as shown in Figures 3 to 5. Note that another experiment was also performed using these 

functions; however, the triangular function was found to be superior.  

Fuzzy rule: This step is used to generate the mapping between the input and output given its 

membership function (if/then). In this scheme, the rule construction procedure follows Table 1. Here, 

there are twelve rules, including Very High (VHI), High (HIG), Medium (MED), Low (LOW), and Very 

Low (VLO) (Klir, G., 1995). 

Fuzzy Inference Engine: This process is used to derive the output (weight) given the inputs, i.e., 

duration, size, and frequency; and rule-based systems (see Figure 6) and to apply an aggregation method, 

i.e., the intersection operation. The output here is the caching probability (see also Figure 7).  

Defuzzifier: This step is used to compute the final output based on the Center of Gravity (CoG) 

concept over the derived output (weight) (see Figure 7). This output (ranging between 0 and 1) will be 

provided the bound to make it either 0 or 1, corresponding to the final replacement policy, i.e., either 

LFU or LRU, respectively. Note that in this research, based on our intensive evaluation, all fuzzy 

parameters will be normalized in a range, i.e., frequency (between 0 and 30), duration (between 0 and 

1,000 milliseconds) based on the recommendation provided by (Wust, C.C., 2004), and object size 

(between 0 and 4.295×109 or 4 GB). 
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Table 1: Examples of Fuzzy Rules 

If 

Duration 

And 

Size 

And 

Frequency 

Then  

Stage 

VHI MED LOW VHI 

HIG HIG LOW VHI 

VHI HIG MED VHI 

VHI HIG LOW VHI 

HIG HIG LOW HIG 

HIG LOW MED MED 

VHI MED MED HIG 

HIG HIG MED HIG 

VHI HIG HIG LOW 

HIG HIG HIG LOW 

MED HIG LOW HIG 

HIG MED MED MED 

 

Figure 3: A Fuzzy Membership Function (Duration) 

 

Figure 4: A Fuzzy Membership Function (Size) 

 

Figure 5: A Fuzzy Membership Function (Frequency) 
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Figure 6: A Triangular Function of the Output Stage (Stage) 

 

Figure 7: Defuzzifier: Example 

3.2. Second-Level Caching 

There are three main components of this level as follows: the SVM Cache Engine, the SVM Cache 

Management, and the SVM Cache Replacement. 
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SVM Cache Engine: This component works with the TCRP Cache Engine; if a cache miss occurs, 

this component primarily retrieves the video object from SVM Cache Management (2nd-level caching 

storage) back to the 1st-level cache (for cache synchronization). This module also returns “miss” if no 

such object is available.  

SVM Cache Management: The primary function of this module is as database management - storing, 

replacing, and retrieving. Given a request from the previous component, the actual video object will be 

delivered. In addition, this module will store the video object determined by SVM Cache Replacement 

in a sequential manner. Note that this module also keeps the collection of access patterns via video traces 

to facilitate the SVM training process based on (weekly) time periods such as 7, 14, or 21 days (discussed 

in the next section). 

SVM Cache Replacement: This module is primarily used to determine the final replacement decision 

of the object sent via Fuzzy Cache TCRP (LFU/LRU). There are two main tasks for this component. 

First, if there is free space in the 2nd-level caching storage, the object will be stored; otherwise, it will 

make a replacement decision based on the second task: SVM classification. This classification consists 

of two phases: training and testing.  

The training process acquires knowledge based on the caching history (video traces from the storage 

management) to construct an SVM training model, which will be used for a later testing phase to 

determine whether content should be cached (determined by Replacement Probability - RP), i.e., 1 = 

cache and 0 otherwise. Noting that only objects with RP=1 will be used for replacement, we will also 

collect the access pattern in both stages (both 1 and 0) in the trace, which will be properly used during 

the training process.  

One of the key classification models is via SVM, whose precision also depends on the training 

datasets. Since the nature of user access patterns for video objects is periodically updated, this model 

also requires an update of the training knowledge. Here, the training period is based on the round 

sequential of the caching storage. Again, especially at the beginning, if all objects in the storage have 

already been replaced, (re)training will be performed. However, the actual period used to determine the 

training cycle is based on a weekly duration corresponding to the user access behavior.  

3.2.1. SVM for Video Caching 

Considering supervised learning methods, the SVM represents a promising classification technique. In 

general, the SVM will determine two classes, making the SVM a non-probabilistic binary linear 

classifier (either -1 or +1) (Kumar, P.V., 2014). In this research, each class represents the caching stage, 

determining whether to cache (to replace/ignore). As shown in Figures 8 and 9, the SVM represents a 

set of points in space mapped to separate categories based on the highest margin. In these figures, linear 

classification is typically applied given the transformation procedure, i.e., from an N-dimensional input 

vector X to feature vectors that provide the objective function D(X), as stated in Equation (1) below. 

𝐷(𝑋) = 𝑊 ∙ 𝑋 + 𝑊0 = 𝑠𝑖𝑔𝑛 {∑ 𝑤𝑗

𝑚

𝑗=1

𝑔(𝑥) + 𝑏} 

 

(1) 
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Figure 8: SVM Linear Classification 

 

Figure 9: SVM Structure 

where the input X = {x1, …, xN} will be fed into the model. Examples of such inputs are the HTTP 

request method (R), URL_ID (U), size (S), duration (D), geographical distance (G), and similarity (SIM) 

(discussed in the next section). A set of weights W = {w1, …, wm} are provided such that N is the total 

number of input nodes, m is the number of kernel function nodes, and b is the bias. Lagrange multipliers 

will be applied in terms of α (a scaling factor that is the gradient of the function used to find the largest 

or smallest value) to derive the weight. yi is the target value in the range of [-1, +1] (either should be 

cached or else), and g(x) is an SVM kernel function, e.g., linear, polynomial, RBF, or sigmoid. 

Algorithm 1: SVM Training (VoD Caching) 

Input: X(R, U, S, D, G, SIM)N, YN 

Output: wm, b 

1 Apply Kernel Function 𝑔(𝑋) = 𝑡𝑎𝑛ℎ(𝛾𝑋𝑇𝑋[𝑗] + 𝑟) 

2 Derive Weights (w) and Bias (b) based on Lagrange Multipliers 

 

Algorithm 2: SVM Testing (VoD Caching) 

Input: x(R, U, S, D, G, SIM), wm, b 

Output: RP  

1 Apply Kernel Function 𝑔(𝑥) = 𝑡𝑎𝑛ℎ(𝛾𝑥𝑇𝑥[𝑗] + 𝑟) 

2 Compute RP ⃪ 𝑠𝑖𝑔𝑛{∑ 𝑤𝑗
𝑚
𝑗=1 𝑔(𝑥) + 𝑏} 

(w.x) + b = +1
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Algorithms 1 and 2 show the SVM classification in both the training and testing stages. For training, 

six main features (R, U, S, D, G, and SIM) were selected as inputs from the access pattern to construct 

the training model. Note that the last two features will be discussed in the next section. In Algorithm 1, 

line 1 shows the determination from the inputs when applying a specific kernel function; here, this 

function is a sigmoidal function. In addition, gamma (𝛾) is 
1

2𝜎2, where 𝜎 is a free adjustable parameter; 

based on the implementation of the SVM (from LIBSVM), this parameter was configured to 1 (Chang, 

C.C., 2011).  

The SVM training process generates a result in terms of the weight (w) and bias (b) in the form of 

Lagrange multipliers. Similar steps were also applied for the testing shown in Algorithm 2. Only the 

test’s individual input (x) (here, we only feed one line of input) will be applied to the kernel function 

over the training sets (X). Line 2 shows the application subsequently using Equation (1) to compute the 

caching replacement probability (RP), as shown in Algorithm 2. 

3.2.2. SVM Classification Feature for VoD Caching  

In general, the precision classification of SC techniques primarily depends on the feature characteristics; 

here, these characteristics can be selected from some variables related to metadata within the video 

access pattern (trace). Six main features were selected as follows. Note that each feature will be 

transformed into numerical formats.  

First, the HTTP Request method (R) is the status of the HTTP for making a web request, i.e., GET 

(web request or pulling the object), POST and PUT (pushing the object), and DELETE (deleting the 

object). Here, the numerical transformations are 1, 2, 3, and 4, respectively. Note that in this research, 

the only object in the evaluation is a video.  

Second, URL_ID (U) is the actual web/server address. The numerical assignment will start from 1 

(first object) and be incremented by 1 for the remaining assignments.  

Third, Size (S) is the actual size of the video object, ranging between 1 and 4 GB (or the maximum 

cache size).  

Fourth, Duration (D) is the delay latency used to access the video object from the VoD server in 

milliseconds (ms). Note that if this value is high, the network distance (or the available bandwidth at a 

particular time) is also high. Therefore, the user satisfaction may not be sufficient, and they may stop 

the query or even change their interests. 

Fifth, Geographical Distance (G) is the approximate physical distance from the requester (here, the 

VoD caching server) to the original VoD server. The lookup is performed from the source to destination 

locations (country) using IP Geolocation from GeoIP (GeoLite) (GeoLite legacy databases, 2016)with 

Geo Dist (Mayer, T., 2011). Equations 2 to 6 show examples of distance derivations. Not that the 

rationale behind using this G metric is based on the nature of the fluctuating bandwidth consumption 

during the working period, i.e., day or night (also fluctuating response time but with a fixed geographical 

distance). 

𝑑𝑙𝑜𝑛 = 𝑙𝑜𝑛2 − 𝑙𝑜𝑛1 (2) 

𝑑𝑙𝑎𝑡 = 𝑙𝑎𝑡2 − 𝑙𝑎𝑡1 (3) 

𝑎 = (sin
𝑑𝑙𝑎𝑡

2
)

2

+ cos 𝑙𝑎𝑡1 × cos 𝑙𝑎𝑡2 × (sin
𝑑𝑙𝑜𝑛

2
)

2

 
(4) 

𝑐 = 2 × atan2(√𝑎, √1 − 𝑎) (5) 

𝑑 = 𝑅 × 𝑐 (6) 
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Where lat1 and lon1 are the latitude and longitude of the source country and lat2 and lon2 are those of 

the destination. R is the mean radius of the Earth (approximately 6,371 km). Again, this distance is an 

implication of a physical characteristic for a particular video object.  

Finally, Similarity (SIM) is the sixth feature used to improve the classification precision. The 

motivation here is that, based on the video characteristics, it is difficult to determine the object similarity 

between the stored file with the computational complexity constraint. Therefore, to avoid byte-to-byte 

comparisons between video objects, MD5 hashing was selected to achieve high-precision object 

similarity determination. Note that this research is not limited to MD5; other hashing techniques can 

also be applied, including SHA, given the characteristics, including hash size and time complexity trade-

off.  

Pioneered by R. Rivest, MD5 is a promising hashing technique (The MD5 Message-Digest 

Algorithm, 2020) that is mostly used to correctly confirm file transfers over the Internet, similar to that 

used in Peer-to-Peer networks (Nurminen, J.K., 2013). The main advantage of MD5 is that it can quickly 

generate 128-bit hash values. Here, the results of MD5 were used to identify video object similarity in 

the cache because the video object size is large. To simplify the object comparison, the summation of 

MD5 chunks was used and limited to only the first megabyte of each object.  

3.2.3. Caching Replacement with Periodic Training  

Based on our observations, the VoD access pattern follows human behavior; in general, 

users/subscribers have watched a video in parts or via other media sources, such as at various events that 

are broadcast worldwide, e.g., Olympic broadcasts or presidential speeches. Here, user behavior is likely 

to exhibit similar characteristics on a weekly timeframe, i.e., watching video content such as cartoons, a 

series, or TV programs broadcasting an episode. Users also tend to watch videos of a previous episode 

beforehand to become familiar with the content before watching a current episode, similar to users also 

watching video/movie trailers beforehand.  

Thus, this research introduced the concept of sliding windows to determine a scope of knowledge for 

training. In other words, a specific set of access patterns will periodically be used to determine training 

information to be used to achieve higher replacement probability precision given the constraints on 

caching storage size. As an example, shown in Figure 10, the selection of a 14-day period was used for 

the training model collected from a recent access, ignoring other accesses (old trace) (see the evaluation 

section for verification of this hypothesis). 

 

Figure 10: Time Line Training Period 

4 Performance Evaluation 

To confirm the practicality of our approach, this section presents our evaluation, including a discussion 

of our hybrid model’s performance, HF-SVM, in addition to a performance comparison against other 

existing candidate methods, such as SVM-LFU (Sathiyamoorthi, V., 2014) and SVM-LRU (Ali, W., 

2012), as well as the other two traditional caching schemes, LFU and LRU (Andjarwirawan, J., 2015). 

Training Period Training Period

14 day Training Period Old Trace
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4.1. Data Pre-processing 

To reflect the real usage of user access, IRCache (NLANR IRCache Sanitized Access Log, 2016), a 

well-known proxy log from the National Lab of Applied Network Research (NLANR) that includes the 

access trace from five main proxy servers across the U.S. (i.e., UC, BO2, SD, SV, and NY), was used 

for the web caching performance evaluation, in particular, the video object trace.  

Note that most related evaluations of caching aspects have used these traces (NLANR IRCache 

Sanitized Access Log, 2016); among others, the key limitation of the proxy model is the deployment, 

which may affect commercial operation (Configuring the secure Gateway, 2016). In addition, since the 

actual access may include billions of objects, in this study, the trace was limited to 30 days from the first 

quarter of 2016 filtered by media type (MIME type) to only include video. Table 2 presents details about 

the dataset from IRCache. 

Table 2: VoD Caching Dataset (from web trace IRCache) 

Proxy  

Dataset 

Proxy  

Server  

Location #Records Duration 

(days)  

UC uc.us.ircache.net Urbana-Champaign, IL 880,549 30 

BO2 bo.us.ircache.net Boulder, CO 859,703 30 

SD sd.us.ircache.net Silicon Valley, CA 877,350 30 

SV sv.us.ircache.net San Diego, CA 680,765 30 

NY ny.us.ircache.net New York, NY 904,584 30 

The trace files from IRCache record all requested information used to make a caching decision. The 

files include seven main attributes: the timestamp (with the socket status as closed) in milliseconds, the 

client address (IP address of the requester to the proxy server), the tag and HTTP code (the status of 

accessible codes, i.e., hit or miss), the size of the web object in bytes, the request method (e.g., GET, 

POST, or PUT), the URL, and the MIME type (e.g., html, audio, and video; here, the focus is only on 

video). 

4.2. Performance Measurement Metric 

There are two main metrics used in this research: Classification Precision and Cache Replacement Rate.  

Classification Precision: As a unit for testing, the Corrected Classification Rate (CCR) (Jang, H., 

2014) was selected to measure the classification accuracy, i.e., whether a particular video object should 

be cached. The metric will only apply to the intelligent system, aka SVM, for training/testing processes, 

as stated in Equation (10): 

𝐶𝐶𝑅 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
(%) 

(10) 

where True Positive (TP) is a classification result where positive training data (to be cached) are 

evaluated as positive (cached), True Negative (TN) is a classification result where negative training data 

(not to be cached) are evaluated as negative (not cached), False Positive (FP) is a classification result 

where negative training data are evaluated as positive, and False Negative (FN) is the classification result 

where positive training data are evaluated as negative. 

Cache Replacement Rate: For system/overall testing, the HR and the BHR are commonly used to 

determine the overall caching efficiency. The HR is the ratio of the number of web objects that the proxy 

server can deliver directly back to the client (#cache hits/#requests), and its corresponding size is given 

by the BHR (#bytes of cache hits/#bytes requested) (Podlipnig, S., 2003). 
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4.3. Simulation Setup and Configuration 

There are two main scenarios used to demonstrate the performance of our hybrid model corresponding 

to the two main metrics. Our testbed was run on a system with Linux Ubuntu 12.04 LTS with an Intel(R) 

Core (TM) Quad Q8400, 2.66 GHz, 8 GB DDR-SDRAM, and a 500 GB 5400 rpm hard disk. 

Our first scenario was set up to reflect the usage of the training period with the assumption that the 

nature of video access considers a specific period. Users tend to watch videos regularly during a week; 

therefore, we varied the factor of the period in the order of 1, 2, and 3 weeks. Here, the SVM (sigmoid) 

was used as the classification model (Ali, W., 2012) due to its superior performance. Here, a well-known 

SVM library (LIBSVM) based on a C++ implementation (Chang, C.C., 2011) was used to evaluate the 

five main datasets from NLANR. 

The second scenario was conducted to evaluate the overall performance. At this stage, the results 

from the first experiment (suitable period determination) were used to measure the actual caching 

efficiency in terms of the HR and the BHR. Again, the two candidates, SVM-LRU (Ali, W., 2012) and 

SVM-LFU (Sathiyamoorthi, V., 2014), were used to conduct a comparative performance evaluation 

with our hybrid model (HF-SVM), therein also including two other traditional caching schemes, i.e., 

LRU and LFU.  

A well-known caching emulation for real-world traces, Web Traff (Markatchev, N., 2002), was 

selected; this is also for model justification proposes (Sathiyamoorthi, V., 2014) (Ali, W., 2012). A fuzzy 

logic tool embedded in the Octave library (Eaton, J.W., 2016) was used, with Fuzzy Mamdani as the 

interference engine. The traces from five main web access datasets were evaluated with cache sizes of 

2k, with k ranging from 5 to 12. 

4.4. Simulation Results and Discussion 

Two main experiments are discussed here. We compared the performance of our proposed technique. 

First, Table 3 shows the CCRs of the SVM classification with different training periods on five datasets; 

higher scores indicate better performance. The classification performance of a 14-days training period 

is on average outstanding (greater than 91.55%) compared with other training periods - 7 and 21 days, 

with values of approximately 86.74 to 90.80% and 89.77 to 93.32%. 

Table 3: CCRs of Different Training Periods 

Dataset CCR (%) 

7 Days 14 Days 21 Days 

Bo2 90.44 94.38 92.47 

NY 86.74 91.82 89.77 

SD 90.80 94.76 93.32 

SV 87.29 91.55 90.43 

UC 88.65 92.81 90.84 

Figures 11 and 12 show the evaluation results of the second scenario on the 5 main datasets (either 

HR or BHR). In general, as shown in Figure 11, the larger the cache size, the higher the HR, i.e., from 

approximately 41.41% to less than 4.11%. On average, the performance (HR) of HF-SVM is outstanding 

on all datasets, i.e., approximately 4.11% to 41.41% (from 32 to 4096 MB); the remaining performances 

are in the order SVM-LRU (3.48% to 36.46%), SVM-LFU (3.51% to 34.70%), LRU (2.97% to 29.42%), 

and LFU (2.83% to 28.01%). 
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(a) BO2 Dataset 

  

(b) NY Dataset 

 

(c) SD Dataset 

 

(d) SV Dataset 

 

(e) UC Dataset 

Figure 11: VoD Caching Performance on Different Datasets: % Hit Rate (HR) vs. Cache Size (MB) 

In other words, the efficiency improvement over the others of HF-SVM is in order of 15.60%, 

18.14%, 44.14%, and 47.17% for SVM-LRU, SVM-LFU, LRU, and LFU, respectively. Considering 

HF-SVM, the average HRs on the SD and BO2 datasets are the highest (almost 50% with a 4096 MB 

cache) but approximately 40% on the other datasets. The other caching schemes follow this trend but 

with lower HRs. It is also noted that with a small cache size (less than 128 MB), there is no significant 

difference in terms of HRs among all schemes; however, with a larger cache, the performance is 

significantly improved with the effect of the SVM. 
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Similar to the HRs, the larger the cache size, the higher the BHRs (ranging from 3.19% to 78.68%). 

Figure 12 shows the BHRs. In general, HF-SVM outperforms the other techniques, i.e., from 3.19% to 

78.68%, with the other performances in the order of SVM-LFU (3.03% to 74.79%), SVM-LRU (2.77% 

to 68.50%), LFU (2.17% to 53.54%), and LRU (2.07% to 51.17%). This is also the rationale for using 

a hybrid fuzzy technique based on LFU and LRU to achieve the highest performance of HF-SVM. 

 

(a) BO2 Dataset 

 

(b) NY Dataset 

 

(c) SD Dataset 

 

(d) SV Dataset 

 

(e) UC Dataset 

Figure 12: VoD Caching Performance on Different Datasets: % Byte Hit Rate (BHR) vs. Cache Size 

(MB) 
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In other words, the efficiency improvement of HF-SVM is better than the improvements of 5.62%, 

15.32%, 48.06%, and 54.79% for SVM-LFU, SVM-LRU, LFU, and LRU, respectively. Similarly, the 

effects of the intelligent scheme, the SVM, become clearer with larger cache sizes (128 MB and greater). 

On average, considering HF-SVM, the BHRs on the SD and UC datasets are higher, i.e., more than 80% 

with a 4096 MB cache size; however, for the other datasets, the BHRs are approximately 60% to 80%. 

The other caching schemes still follow this trend but achieve lower BHRs. 

4.5. Complexity Analysis 

Our proposed method consists of two levels: TCRP and fuzzy LFU/LRU in the first level of cache 

replacement and SVM in the second level, all of which are designed to run continuously. For this reason, 

the complexity of the algorithm can be analyzed using Big O notation, whose details are in two steps as 

follows: 

First, in general, the time complexity of TCRP cache replacement algorithms (Lee, D., 2001) can be 

analyzed based on the number of cache hits and misses, and the cost of updating the cache when new 

data is added or when old data is removed. For example, the LRU algorithm keeps a queue of the most 

recently used items in the cache. When there is a cache miss, the least recently used item is kicked out. 

LRU’s time complexity can be approximated by the cost of a cache hit/miss, i.e., O(1), because the item 

can be quickly retrieved from the cache. The time complexity of the LFU algorithm is O (log2 n), but it 

is determined by the frequency of access to the cache items rather than the recency of access. 
According to Y. H. Kim et al. (Kim, Y.H., 2000), FLS has been analyzed for complexity, which is 

divided into three components, i.e., fuzzifier, fuzzy inference engine, and defuzzifier. Assuming that 

each input variable has 3 fuzzy sets, and each fuzzy set has 3 membership functions, the number of 

operations required to evaluate the fuzzy set can be approximated as follows: 

Each input variable requires three comparisons and three multiplications to evaluate the membership 

functions of the three fuzzy sets. Three input variables require 18 operations to evaluate membership 

functions: 3 × (3 comparisons + 3 multiplications). Each rule requires two comparisons to apply the 

logical operator (e.g., AND and OR) to the membership values of the input variables, such that 12 rules 

× 2 comparisons = 24 logical operator operations. We then calculated a weighted average, or maximum 

value, from the membership values to get the fuzzy set output. For each output variable, a weighted 

average requires 27 multiplications and 26 additions to compute the numerator and denominator. 

Since there is only one output variable, aggregating membership values requires 27 × (3 

multiplications + 2 additions) = 189 operations. The total number of operations necessary to evaluate 

the fuzzy set is therefore approximately 18 + 24 + 189 = 231.  

To calculate the approximate Big O complexity of this fuzzy set using the complexity analysis 

according to (Kim, Y.H., 2000), assume NMF is the number of membership functions and NV is the 

number of input variables. Big O complexity is the maximum value of the process fuzzy interference 

engine, which is O(NMFNV). 

Second, the implementation and algorithm used determine the Big O complexity of SVM (Chang, 

C.C., 2011) (Chapelle, O., 2010). SVM algorithms can be described by the number of support vectors, 

training examples, and dimensions in the feature space. In this study, we used a second level replacement 

cache engine to implement a linear SVM classifier. The linear SVM has a complexity of O(nd), where 

n is the number of training examples and d is the dimensionality of the feature space. This is because 

the linear SVM solves a linear optimization problem involving only the training examples and the weight 
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vector, and the complexity of solving a linear optimization problem increases proportionally to the 

number of variables. 

To summarize, Table 4 shows the complexity of our method, HF-SVM, against the other algorithms 

for comparison purposes, i.e., SVM-LRU, SVM-LFU, LRU, and LFU. 

Table 4: Complexity Analysis 

Cache Replacement Scheme Complexity 

HF-SVM O(nd) + O(NMFNV) +  

Complexity of TCRP (O(1) or O(log2 n)) 

SVM-LRU O(nd) + O(1) 

SVM-LFU O(nd) + O(log2 n) 

LRU O(1) 

LFU O(log2 n) 

5 Conclusion and Future Work 

In this research, an investigation was conducted to integrate traditional and intelligent caching schemes 

as two-level approaches, in particular for video caching in order to achieve fast user responses and high 

caching precision by leveraging the advantages of each scheme.  

Considering the first level, intensive evaluations were conducted to select the two best traditional 

algorithms - LRU and LFU. The obtained HRs were 31.23% and 28.38% for LRU and LFU, 

respectively, and the BHRs were 51.64% and 54.02% for LRU and LFU, respectively. Since the former 

technique is superior in terms of HR and the latter is superior in terms of BHR, this research proposed 

an additional weight derived from a fuzzy logic system as the replacement selection criteria, called Fuzzy 

TCRP or Fuzzy LRU/LFU. This stage was used to support real-time video access as a result of its key 

benefits of simplicity (fast response). 

Considering the constraint of cache size (first level used to support a fast response), the second level 

primarily focuses on the caching replacement precision, therein leveraging the larger cache size and lack 

of a real-time requirement. Here, an SVM was proposed as an intelligent SC scheme to make a decision 

as to whether the video object should be cached in the storage based on knowledge of historical access. 

In addition, six main features were selected for SVM classification, HTTP request method, URL_ID, 

size, duration, geographical distance, and similarity, in addition to an adjustable training period for the 

sliding window concept, properly based on human behaviors to access video contents. 

Our two-level caching model, Fuzzy LFU/LRU and SVM (called HF-SVM), was evaluated against 

SVM-LFU, SVM-LRU, LFU, and LRU using video traces from five main datasets from NLANR for 

30-day periods. The results showed that HF-SVM is superior in terms of both HR and BHR, i.e., average 

values of 44.45% and 83.16%. HF-SVM achieved a better caching efficiency compared with the 

efficiencies of 47.17%, 44.14%, 18.14%, and 15.60%, for SVM-LFU, SVM-LRU, LFU, and LRU, 

respectively, in terms of HRs and 48.06%, 54.79%, 5.62%, and 15.32%, respectively, in terms of BHRs.  

Noting that although HF-SVM is a superior video caching replacement system, the trade-off is the 

increase of computational complexity. Additional investigations, assumptions, and constraints should 

also be explored including large-scale datasets such as for a year trace but also including large-scale 

caching storage. Other hybrid schemes and optimizations for soft computing should also be investigated. 

The practicality of HF-SVM embedded in a real caching system, such as Squid, should be investigated 

further. These topics are all subjects of on-going research considering commercial deployment and 

hardware cost constraints. 
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