A Smart Crowd Monitoring and Management Model for Humanity in Intelligent Environments: A Real-Time Application Scenario
Dr. Fernando EscobedoProfessor, Universidad César Vallejo, Perú; Universidad Nacional De Tumbes, Tumbes, Perú. jescobedog@ucv.edu.pe, jescobedog@untumbes.edu.pe0000-0002-6443-1497
Dr. Henry Bernardo Garay CanalesProfessor, Universidad Nacional De Tumbes, Tumbes, Perú. hgarayc@untumbes.edu.pe0000-0003-2323-1103
Dr. Richard Augusto Garavito CriolloProfessor, Universidad Nacional De Tumbes, Tumbes, Perú. rgaravitoc@untumbes.edu.pe0000-0002-2371-2014
Dr. Eduardo Min Yacila RomeroProfessor, Universidad César Vallejo, Perú; Universidad Nacional De Tumbes, Tumbes, Perú. emyacilay@ucvvirtual.edu.pe, eyacilar@untumbes.edu.pe0009-0009-8846-5593
Dr. Cristihan Sosa OrellanaProfessor, Universidad César Vallejo, Perú; Universidad Nacional De Tumbes, Tumbes, Perú. SCSOSAS@ucvvirtual.edu.pe, csosao@untumbes.edu.pe0000-0001-8298-2244
Dr. José Alberto Bayona RamírezProfessor, Universidad Nacional De Tumbes, Tumbes, Perú. jbayonar@untumbes.edu.pe0009-0001-9056-519X
Dr. Carlos Alberto Lamadrid VelaProfessor, Universidad Nacional De Tumbes, Tumbes, Perú. clamadridv@untumbes.edu.pe0000-0003-4011-3301
Dr. José Manuel Gálvez HerreraProfessor, Universidad Nacional De Tumbes, Tumbes, Perú. jgalvezh@untumbes.edu.pe0009-0007-0860-7180
A smart city is an ecosystem that employs advanced technology to enhance the flexibility, efficiency, and sustainability of networks and services using data, online, and communications technologies, optimizing the city for the advantage of residents. Numerous cities integrate data collection components from structures or those operated by firms to enhance resource optimization, including energy use, intelligent meters, illumination, water supply usage, traffic information, surveillance pictures, protection models, contamination metrics, and environmental information. The city-as-a-platform idea is gaining traction, and it is becoming clear that towns require effective governance structures capable of implementing smart platforms and public information and extensively utilizing artificial intelligence. In several areas, data collecting poses little challenge; however, managing and analyzing data to optimize resources and enhance inhabitants' lives is a significant issue. This research introduces deepint.net, an online tool for data capture, integration, analysis, generating panels, alarm methods, and optimization methods. This article demonstrates the application of deepint.net to predict congestion on the sidewalks of Melbourne utilizing the XBoost method. In light of the present circumstances, it is prudent to avoid traversing congested metropolitan highways; hence, the framework described in this work aids in identifying regions with less pedestrian activity. This scenario exemplifies a successful crowd control system executed and administered using an application that provides several options for managing data acquired in intelligent territory and urban areas.